The Higgs, Flavor and Large A_t in Extended GMSB

Jared A. Evans

jaredaevans@gmail.com

Department of Physics University of Illinois, Urbana-Champaign

arxiv:1303.0228 – JAE, D. Shih arxiv:1501.XXXX – JAE, D. Shih, A. Thalapillil More In Progress – JAE, D. Shih, A. Thalapillil

Higgs at 125 GeV

A problem for the MSSM

A Higgs at \sim 125 GeV is a $\it big$ problem for the MSSM

A Higgs at \sim 125 GeV is a \emph{big} problem for the MSSM

To accommodate, we need either: (Draper, Meade, Reece, Shih 2011)

A Higgs at ~ 125 GeV is a *big* problem for the MSSM

To accommodate, we need either: (Draper, Meade, Reece, Shih 2011)

2.0 M_S [TeV] 1.0 0.5 $\tan \beta = 30$ 0.0 $X_t [\text{TeV}] = A_t - \mu \cot \beta$

Large A-terms $\sim \sqrt{6}M_{\rm S}$

Higgs at 125 GeV A *HUGE* problem for GMSB

Gauge mediated SUSY breaking (GMSB) \Rightarrow no A-terms at M_{mess}

Gauge mediated SUSY breaking (GMSB) \Rightarrow no A-terms at M_{mess}

Can be generated through running, but need $M_{mess} \gg M_{SUSY}$

Higgs at 125 GeV A *HUGE* problem for GMSB

Gauge mediated SUSY breaking (GMSB) \Rightarrow no A-terms at M_{mess}

Can be generated through running, but need $M_{mess}\gg M_{SUSY}$

 \Rightarrow huge tuning $\Delta \sim 5000$

Evans (UIUC)

Higgs at 125 GeV

Extended GMSB has MSSM-messenger terms in the superpotential

$$W \supset \lambda H_u \Phi \Psi + y_t H_u Q_3 U_3 + X(\Phi \bar{\Phi} + \Psi \bar{\Psi}) + \text{h.c.}$$

Higgs at 125 GeV Better in EGMSB?

Extended GMSB has MSSM-messenger terms in the superpotential

$$W \supset \lambda H_u \Phi \Psi + y_t H_u Q_3 U_3 + X (\Phi \bar{\Phi} + \Psi \bar{\Psi}) + \text{h.c.}$$

A-terms are bilinear terms: $A_t = y_t \left(A^{H_u} F_{H_u}^{\dagger} H_u + A^Q F_{Q_3}^{\dagger} Q_3 + A^U F_{U_3}^{\dagger} U_3 \right)$

Evans (UIUC) Flavor in EGMSB January 15, 2015 4 / 40

Higgs at 125 GeV Better in EGMSB?

Extended GMSB has MSSM-messenger terms in the superpotential

$$W \supset \lambda H_u \Phi \Psi + y_t H_u Q_3 U_3 + X (\Phi \bar{\Phi} + \Psi \bar{\Psi}) + \text{h.c.}$$

A-terms are bilinear terms:
$$A_t = y_t \left(A^{H_u} F_{H_u}^\dagger H_u + A^Q F_{Q_3}^\dagger Q_3 + A^U F_{U_3}^\dagger U_3 \right)$$

With a low messenger scale and large A-terms, can we reduce tuning?

Target: $\Delta \sim 500$, i.e., the best the MSSM can get!

Evans (UIUC) Flavor in EGMSB January 15, 2015 4 / 40

$$A_{t} = y_{t} \left(A^{H_{u}} F_{H_{u}}^{\dagger} H_{u} + A^{Q} F_{Q_{3}}^{\dagger} Q_{3} + A^{U} F_{U_{3}}^{\dagger} U_{3} \right)$$

Survey Tuning in EGMSB Models with a 125 GeV Higgs

Survey Flavor in EGMSB Models with Lower Tuning

$$A_{t} = y_{t} \left(A^{H_{u}} F_{H_{u}}^{\dagger} H_{u} + A^{Q} F_{Q_{3}}^{\dagger} Q_{3} + A^{U} F_{U_{3}}^{\dagger} U_{3} \right)$$

Survey Tuning in EGMSB Models with a 125 GeV Higgs

- ▶ Need EGMSB couplings that contain $H_{\mu\nu}$, Q_3 or U_3 ($Q \equiv Q_3$)
- Write all couplings compatible with SU(5) unification ($N_{eff} < 6$)
- Define each model by ONE EGMSB coupling (31 models total)
- ▶ Scan each model to determine smallest tuning possible
- Examine LHC phenomenology in models with lower tuning

Survey Flavor in EGMSB Models with Lower Tuning

Evans (UIUC) Flavor in EGMSB January 15, 2015

$$A_t = y_t \left(A^{H_u} F_{H_u}^{\dagger} H_u + A^Q F_{Q_3}^{\dagger} Q_3 + A^U F_{U_3}^{\dagger} U_3 \right)$$

Survey Tuning in EGMSB Models with a 125 GeV Higgs

- ▶ Need EGMSB couplings that contain H_u , Q_3 or U_3 ($Q \equiv Q_3$)
- ▶ Write all couplings compatible with SU(5) unification ($N_{eff} \leq 6$)
- ▶ Define each model by ONE EGMSB coupling (31 models total)
- Scan each model to determine smallest tuning possible
- ► Examine LHC phenomenology in models with lower tuning

Survey Flavor in EGMSB Models with Lower Tuning

- ▶ Relax flavor alignment, i.e., $\kappa_3 Q_3 \Phi \tilde{\Phi} \rightarrow \kappa_i Q_i \Phi \tilde{\Phi}$
- How much misalignment permitted before flavor constraints?
- What does the future hold?

Soft terms

Analytic Continuation in Superspace

First, we need expressions for the soft SUSY breaking terms

Soft terms

Analytic Continuation in Superspace

First, we need expressions for the soft SUSY breaking terms

These were calculated via analytic continuation – Chacko, Ponton (2001)

First, we need expressions for the soft SUSY breaking terms

These were calculated via analytic continuation - Chacko, Ponton (2001)

Method requires Z continuous across the messenger threshold

Not true in models with MSSM-Messenger mixing!

$$W = y_t Q U H_u + \lambda Q U \Phi_{H_U} = Q U (y_t H_u + \lambda \Phi_{H_U})$$

$$Z_{H_u} \& Z_{\Phi_{H_u}} \text{ mix}$$

Soft terms

Analytic Continuation in Superspace

First, we need expressions for the soft SUSY breaking terms

These were calculated via analytic continuation – Chacko, Ponton (2001)

Method requires Z continuous across the messenger threshold

Not true in models with MSSM-Messenger mixing!

$$W = y_t QUH_u + \lambda QU\Phi_{H_U} = QU(y_t H_u + \lambda \Phi_{H_U})$$
 $Z_{H_u} \& Z_{\Phi_{H_u}}$ mix

Derived a new technique to treat these couplings
(Details too technical for this talk)

Types of models

Two types of models

Туре І	Type II				
MSSM-Messenger-Messenger	MSSM-MSSM-Messenger				
Higgs <u>Q</u> -class <u>U</u> -class	w/ mixing w/o mixing				
$\lambda H_u \Phi \tilde{\Phi} \qquad \lambda Q \Phi \tilde{\Phi} \qquad \lambda U \Phi \tilde{\Phi}$	$\lambda H_u Q \Phi_U \qquad \lambda U E \Phi_{\bar{D}}$				

Types of models

Two types of models

		Type I		Type II			
	MSSM-N	/lessenger-N	Messenger .	MSSM-MSSM-Messenger			
	Higgs	Q-class	<u><i>U</i>-class</u>	w/ mixing	w/o mixing		
	$\lambda H_u \Phi \tilde{\Phi}$	$\lambda Q \Phi \tilde{\Phi}$	$\lambda U \Phi ilde{\Phi}$	$\lambda H_u Q \Phi_U$	$\lambda \textit{UE}\Phi_{ar{D}}$		
Tuning:	???	???	???	???	???		
Flavor:	???	???	???	???	???		

We will assess the tuning and flavor in these models!

Evans (UIUC) Flavor in EGMSB January 15, 2015 7 / 40

Lightning GMSB Review

Lightning GMSB Review

$$W \sim X \Phi \tilde{\Phi} + \{ \mathsf{MSSM} \ \mathsf{yukawas} \}$$

$$\langle X \rangle = M + \theta^2 F$$
, $\Lambda = F/M$, $\tilde{\Lambda} = \frac{\Lambda}{16\pi^2}$

Lightning GMSB Review

$$W \sim X \Phi \tilde{\Phi} + \{ \mathsf{MSSM} \ \mathsf{yukawas} \}$$

$$\langle X \rangle = M + \theta^2 F$$
, $\Lambda = F/M$, $\tilde{\Lambda} = \frac{\Lambda}{16\pi^2}$

$$M_r \sim N_{eff} g_r^2 \tilde{\Lambda}$$
 $m_{soft}^2 \sim 2 N_{eff} C_r g_r^4 \tilde{\Lambda}^2$ (C_r quadratic Casimirs)
 A -terms = 0

Evans (UIUC) Flavor in EGMSB

#	Model	d_H	d_ϕ	C_r
1.1	$H_{u}\phi_{\bar{5},H_{d}}\phi_{1,S}$	N _m	3	$\left(\frac{3}{10},\frac{3}{2},0\right)$
1.2	$H_{\mu}\phi_{10,Q}\phi_{10,U}$	3 <i>N_m</i>	3	$(\frac{13}{30}, \frac{3}{2}, \frac{8}{3})$
1.3	$H_u\phi_{5,ar{D}}\phi_{ar{10},ar{Q}}$	3	3	$(\frac{7}{30}, \frac{3}{2}, \frac{8}{3})$
1.4	$H_{u}\phi_{5,ar{L}}\phi_{ar{10},ar{E}}$	1	3	$\left(\frac{9}{10},\frac{3}{2},0\right)$
1.5	$H_{u}\phi_{ar{5},L}\phi_{24,S}$	1	3	$(\frac{3}{10}, \frac{3}{2}, 0)$
1.6	$H_{u}\phi_{\bar{5},L}\phi_{24,W}$	3 2	<u>5</u>	$(\frac{3}{10}, \frac{7}{2}, 0)$
1.7	$H_u\phi_{\bar{5},D}\phi_{24,X}$	3	3	$\left(\frac{19}{30},\frac{3}{2},\frac{8}{3}\right)$

$$W \sim \kappa H_u \sum^{N_m} \Phi_i \tilde{\Phi}_i$$

$$\begin{split} A_{H_{u}} &= -d_{H}\kappa^{2}\tilde{\Lambda} \\ \delta m_{H_{u}}^{2} &= d_{H}\kappa^{2} \left(\left(d_{H} + d_{\phi} \right) \kappa^{2} - 2C_{r}g_{r}^{2} - \frac{16\pi^{2}}{3}h\left(\frac{\Lambda}{M} \right) \frac{\Lambda^{2}}{M^{2}} \right) \tilde{\Lambda}^{2} \\ \delta m_{Q}^{2} &= -d_{H}y_{t}^{2}\kappa^{2}\tilde{\Lambda}^{2} \\ \delta m_{U}^{2} &= -2d_{H}y_{t}^{2}\kappa^{2}\tilde{\Lambda}^{2} \end{split}$$

	#	Model	d_H	d_ϕ	C_r	
	1.1	$H_{u}\phi_{\bar{5},H_{d}}\phi_{1,S}$	N _m	3	$\begin{array}{c} 3 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $	
	1.2	$H_{\boldsymbol{u}}\phi_{10,\boldsymbol{Q}}\phi_{10,\boldsymbol{U}}$	$3N_m$	3	$(\frac{13}{30}, \frac{3}{2}, \frac{8}{3})$	
	1.3	$H_{u}\phi_{ar{5},ar{D}}\phi_{ar{10},ar{Q}}$	3	3	$(\frac{7}{30}, \frac{3}{2}, \frac{8}{3})$	
	1.4	$H_{u}\phi_{f{5},ar{L}}\phi_{ar{f{10}},ar{ar{E}}}$	1	3	$(\frac{9}{10}, \frac{3}{2}, 0)$	
	1.5	$H_{u}\phi_{ar{5},L}\phi_{24,S}$	1	3	$(\frac{3}{10}, \frac{3}{2}, 0)$	
bilinear A	1.6	$H_u\phi_{\bar{5},L}\phi_{24,W}$	$\frac{1}{\frac{3}{2}}$	3 5 2 3	$(\frac{3}{10}, \frac{7}{2}, 0)$	
	1.7	$H_u\phi_{ar{5},D}\phi_{24,X}$	3	3	$\left(\frac{19}{30},\frac{3}{2},\frac{8}{3}\right)$	
bilin $A_{H_{u}} = -d_{H}\kappa^{2}\tilde{\Lambda}$ $\delta m_{H_{u}}^{2} = d_{H}\kappa^{2} \left((a_{H_{u}}^{2} + a_{H_{u}}^{2}) \right)$	ear A	$vv \sim \kappa$				~ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
$\delta m_Q^2 = -d_H y_t^2 \kappa^2$ $\delta m_U^2 = -2d_H y_t^2 \kappa^2$	$\tilde{\Lambda}^2$			1	,,,,	

9 / 40

	1.1	$H_{u}\phi_{\bar{5},H_{d}}\phi_{1,S}$	N _m	3	$\left(\frac{3}{10},\frac{3}{2},0\right)$	
	1.2	$H_{\boldsymbol{u}}\phi_{10,\boldsymbol{Q}}\phi_{10,\boldsymbol{U}}$	3 <i>N</i> _m	3	$(\frac{13}{30}, \frac{3}{2}, \frac{8}{3})$	
	1.3	$H_{u}\phi_{5,ar{D}}\phi_{ar{10},ar{Q}}$	3	3	$(\frac{9}{30}, \frac{3}{2}, \frac{8}{3})$	
	1.4	$H_{u}\phi_{5,ar{L}}\phi_{ar{10},ar{E}}$	1	3	$(\frac{9}{10}, \frac{3}{2}, 0)$	
	1.5	$H_{u}\phi_{ar{5},L}\phi_{24,S}$	1	3	$(\frac{3}{10}, \frac{3}{2}, 0)$	
bilinear A	1.6	$H_{u}\phi_{\bar{5},L}\phi_{24,W}$	$\begin{array}{c c} 1 \\ \frac{3}{2} \\ 3 \end{array}$	3 <u>5</u> 2 3	$(\frac{3}{10}, \frac{7}{2}, 0)$	
	1.7	$H_{u}\phi_{ar{5},D}\phi_{24,X}$	3	3	$\begin{pmatrix} \frac{3}{10}, \frac{9}{123}, \frac{8}{123}, \frac{8}{123}, \frac{8}{123}, \frac{8}{123}, \frac{8}{123}, \frac{8}{123}, \frac{8}{123}, \frac{8}{123}, \frac{9}{123}, \frac{9}{123}, \frac{9}{123}, \frac{9}{123}, \frac{9}{123}, \frac{9}{123}, \frac{9}{123}, \frac{9}{123}, \frac{8}{123}, \frac{9}{123}, \frac{9}{123$	
	ear <i>F</i>	$VV \sim \kappa$		$\Phi_i \tilde{\Phi}_i$		
$A_{H_u} = -d_H \kappa^2 \Lambda$	\downarrow					
$A_{H_u} = -d_H \kappa^2 \tilde{\Lambda}$ $\delta m_{H_u}^2 = d_H \kappa^2 \left((d_H + d_\phi) \kappa^2 - 2C_r g_r^2 - \frac{16\pi^2}{3} h \left(\frac{\Lambda}{M} \right) \frac{\Lambda^2}{M^2} \right) \tilde{\Lambda}^2$						
$\delta m_Q^2 = -d_H y_t^2 \hat{\kappa}^2$ $\delta m_U^2 = -2d_H y_t^2 \kappa$,	
$\delta m_U^2 = -2d_H y_t^2 \kappa$	$^2\tilde{\Lambda}^2$					

 d_H

 d_{ϕ}

 C_r

Model

	#	Model	d_H	d_{ϕ}	C_r	
	1.1	$H_{u}\phi_{\bar{5},H_{d}}\phi_{1,S}$	N _m	3	$\left(\frac{3}{10},\frac{3}{2},0\right)$	
	1.2	$H_{u}\phi_{10,Q}\phi_{10,U}$	3 <i>N_m</i>	3	(13) (30) (13) (30) (13) (30) (13) (30) (13) (30) (13) (30) (13) (30) (13) (30) (13) (30) (30) (30) (30) (30) (30) (30) (3	
	1.3	$H_u\phi_{5,ar{D}}\phi_{ar{10},ar{Q}}$	3	3	$(\frac{7}{30}, \frac{3}{2}, \frac{8}{3})$	
	1.4	$H_{u}\phi_{5,ar{L}}\phi_{ar{10},ar{E}}$	1	3	$\left(\frac{9}{10},\frac{3}{2},0\right)$	
	1.5	$H_{u}\phi_{ar{5},L}\phi_{24,S}$	1	3	$(\frac{3}{10}, \frac{3}{2}, 0)$	
bilinear A	1.6	$H_{u}\phi_{\mathbf{\bar{5}},L}\phi_{24,W}$	$\frac{1}{\frac{3}{2}}$	3 <u>5</u> 2 3	$(\frac{3}{10}, \frac{7}{2}, 0)$	
1	1.7	$H_{u}\phi_{ar{5},D}\phi_{24,X}$	3	3	$\left(\frac{19}{30},\frac{3}{2},\frac{3}{3}\right)$	
bilin	ear <i>F</i>	$W \sim \kappa \kappa$	$H_u \sum_{n}^{N_m} c$	$\Phi_i \tilde{\Phi}_i$	(´	
.		other κ^4			gauge	\
$A_{H_u} = -d_H \kappa^2 \tilde{\Lambda}$ $\delta m_{H_u}^2 = d_H \kappa^2 \left(\left(e^{-\frac{1}{2} \delta m_H^2} \right) \right)$	\downarrow	4		_	2)	``~=~~`
		d_{ϕ}) $\kappa^2 - 2C_{r\xi}$	$g_r^2 - \frac{1}{2}$	$\frac{6\pi^2}{3}h$	$\left(\frac{\Lambda}{M}\right)\frac{\Lambda^2}{M^2}$	$\tilde{\lambda}^2$
$\delta m_Q^2 = -d_H y_t^2 \hat{\kappa}^2$ $\delta m_U^2 = -2d_H y_t^2 \kappa^2$	$^2\tilde{\Lambda}^2$,	
$\delta m_U^2 = -2d_H y_t^2 \kappa$	$\epsilon^2 \tilde{\Lambda}^2$					

Ш

11000

	#	Model	d _H	d_ϕ	C_r	
	1.1	$H_{u}\phi_{\bar{5},H_{d}}\phi_{1,S}$	N _m	3	$(\frac{3}{10}, \frac{3}{2}, 0)$	1
	1.2	$H_{\boldsymbol{\mu}}\phi_{10,\boldsymbol{Q}}\phi_{10,\boldsymbol{U}}$	$3N_m$	3	$(\frac{13}{30}, \frac{3}{2}, \frac{8}{3})$	
	1.3	$H_u\phi_{5,ar{D}}\phi_{ar{10},ar{Q}}$	3	3	$(\frac{3}{30}, \frac{3}{2}, \frac{8}{3})$	
	1.4	$H_u\phi_{5,\bar{L}}\phi_{10,\bar{E}}$	1	3	$(\frac{9}{10}, \frac{3}{2}, 0)$	
	1.5	$H_{u}\phi_{ar{5},L}\phi_{24,S}$	1	3	$(\frac{3}{10}, \frac{3}{2}, 0)$	
bilinear A	1.6	$H_u\phi_{\bar{5},L}\phi_{24,W}$	$\frac{1}{\frac{3}{2}}$	3 <u>5</u> 3	$(\frac{3}{10}, \frac{7}{2}, 0)$	
	1.7	$H_{u}\phi_{\bar{5},D}\phi_{24,X}$	3	3	$\begin{array}{c} (\frac{3}{10},\frac{3}{2},0)\\ (\frac{13}{39},\frac{3}{2},\frac{8}{19})\\ (\frac{7}{30},\frac{3}{2},\frac{3}{2},\frac{3}{2})\\ (\frac{9}{10},\frac{3}{2},\frac{3}{2},0)\\ (\frac{3}{10},\frac{7}{2},\frac{7}{2},\frac{8}{2})\\ (\frac{19}{30},\frac{3}{2},\frac{3}{2},\frac{8}{3}) \end{array}$	
bilin	ear <i>A</i>	$VV \sim \kappa$	$H_u \sum_{m=0}^{N_m} e^{-\frac{1}{2}}$	$\Phi_i ilde{\Phi}_i$		- 1
↓		other κ^4			gauge	\/
$A_{H_u} = -d_H \kappa^2 \Lambda$						`~ > `
$A_{H_{u}} = -d_{H}\kappa^{2}\tilde{\Lambda}$ $\delta m_{H_{u}}^{2} = d_{H}\kappa^{2}\left(\left(a_{H_{u}}\right)^{2}\right)$	$d_H +$	d_{ϕ}) $\kappa^2 - 2C_{r\delta}$	$g_r^2 - \frac{1}{2}$	$\frac{6\pi^2}{3}h$	$\left(\frac{\Lambda}{M}\right)\frac{\Lambda^2}{M^2}$	$ ilde{\Lambda}^2$
$\delta m_Q^2 = -d_H y_t^2 \kappa^2$ $\delta m_U^2 = -2d_H y_t^2 \kappa^2$	$\tilde{\Lambda}^2$					
$\delta m_U^2 = -2d_H y_t^2 \kappa$	$^2\tilde{\Lambda}^2$					one-loop term

٦

	#	Model	d _H	d_{ϕ}	Cr	
	1.1	$H_{u}\phi_{\bar{5},H_{d}}\phi_{1,S}$	N _m	3	$\left(\frac{3}{10},\frac{3}{2},0\right)$	
	1.2	$H_{u}\phi_{10,Q}\phi_{10,U}$	$3N_m$	3	$(\frac{13}{30}, \frac{3}{2}, \frac{8}{3})$	
	1.3	$H_u\phi_{5,ar{D}}\phi_{ar{10},ar{Q}}$	3	3	$(\frac{7}{30}, \frac{3}{2}, \frac{8}{3})$	
	1.4	$H_{u}\phi_{5,ar{L}}\phi_{ar{10},ar{E}}$	1	3	$(\frac{9}{10}, \frac{3}{2}, 0)$	
	1.5	$H_{u}\phi_{ar{5},L}\phi_{24,S}$	1	3	$(\frac{3}{10}, \frac{3}{2}, 0)$	
bilinear A	1.6	$H_{u}\phi_{\mathbf{\bar{5}},L}\phi_{24,W}$	$\frac{1}{\frac{3}{2}}$	3 <u>5</u> 2 3	$(\frac{3}{10}, \frac{7}{2}, 0)$	
	1.7	$H_{u}\phi_{ar{5},D}\phi_{24,X}$	3	3	$\begin{array}{c} (\frac{3}{10},\frac{3}{2},0)\\ (\frac{13}{10},\frac{3}{2},\frac{8}{10},\frac{8}{10},\frac{8}{10},\frac{8}{10},\frac{1}{10},$	
bilin	ear <i>A</i>	$W \sim \kappa$	$H_u \sum_{m=0}^{N_m} c$	$\Phi_i \tilde{\Phi}_i$	≺	/-(
\downarrow		other κ^4			gauge	
$A_{H_u} = -d_H \kappa^2 \tilde{\Lambda}$	\downarrow	V V			,	```
$A_{H_u} = -d_H \kappa^2 \tilde{\Lambda}$ $\delta m_{H_u}^2 = d_H \kappa^2 \left((a_H \kappa^2)^2 + (a_H \kappa^2)^2 \right)$	$d_H +$	d_{ϕ}) $\kappa^2 - 2C_{r\xi}$	$g_r^2 - \frac{1}{2}$	$\frac{6\pi^2}{3}h$	$\left(\frac{\Lambda}{M}\right)\frac{\Lambda^2}{M^2}$	$ ilde{\Lambda}^2$
$\delta m_Q^2 = -d_H y_t^2 \hat{\kappa}^2$ $\delta m_U^2 = -2d_H y_t^2 \hat{\kappa}$	$\tilde{\Lambda}^2$		ough y		K '	
$\delta m_H^2 = -2d_H v_t^2 \kappa$	$^2\tilde{\Lambda}^2$		on)			
0 115						one-loop term

Solving for $m_h = 125$ GeV

$$A_{H_u} = -d_H \kappa^2 \tilde{\Lambda} \qquad \text{Note: } A_t = y_t \left(A_{H_u} + A_{Q_3} + A_{U_3} \right)$$

$$\delta m_{H_u}^2 = d_H \kappa^2 \left(\left(d_H + d_\phi \right) \kappa^2 - 2C_r g_r^2 - \frac{16\pi^2}{3} h \left(\frac{\Lambda}{M} \right) \frac{\Lambda^2}{M^2} \right) \tilde{\Lambda}^2$$

$$\delta m_Q^2 = -d_H y_t^2 \kappa^2 \tilde{\Lambda}^2$$

$$\delta m_U^2 = -2d_H y_t^2 \kappa^2 \tilde{\Lambda}^2$$

Given an EGMSB model, κ , F, and M: spectra completely determined

Solving for $m_h = 125$ GeV

$$A_{H_u} = -d_H \kappa^2 \tilde{\Lambda} \qquad \text{Note: } A_t = y_t \left(A_{H_u} + A_{Q_3} + A_{U_3} \right)$$

$$\delta m_{H_u}^2 = d_H \kappa^2 \left(\left(d_H + d_\phi \right) \kappa^2 - 2 C_r g_r^2 - \frac{16\pi^2}{3} h \left(\frac{\Lambda}{M} \right) \frac{\Lambda^2}{M^2} \right) \tilde{\Lambda}^2$$

$$\delta m_Q^2 = -d_H y_t^2 \kappa^2 \tilde{\Lambda}^2$$

$$\delta m_{U}^2 = -2 d_H y_t^2 \kappa^2 \tilde{\Lambda}^2$$

Given an EGMSB model, κ , F, and M: spectra completely determined

Moreover, given $(\kappa, \frac{\Lambda}{M})$, increasing M increases m_h monotonically

Evans (UIUC) Flavor in EGMSB January 15, 2015 10 / 40

Solving for $m_h = 125 \text{ GeV}$

$$A_{H_u} = -d_H \kappa^2 \tilde{\Lambda} \qquad \text{Note: } A_t = y_t \left(A_{H_u} + A_{Q_3} + A_{U_3} \right)$$

$$\delta m_{H_u}^2 = d_H \kappa^2 \left(\left(d_H + d_\phi \right) \kappa^2 - 2C_r g_r^2 - \frac{16\pi^2}{3} h \left(\frac{\Lambda}{M} \right) \frac{\Lambda^2}{M^2} \right) \tilde{\Lambda}^2$$

$$\delta m_Q^2 = -d_H y_t^2 \kappa^2 \tilde{\Lambda}^2$$

$$\delta m_U^2 = -2d_H y_t^2 \kappa^2 \tilde{\Lambda}^2$$

Given an EGMSB model, κ , F, and M: spectra completely determined

Moreover, given $(\kappa, \frac{\Lambda}{M})$, increasing M increases m_h monotonically

PLAN:

- 1. Scan over $(\kappa, \frac{\Lambda}{M})$
- 2. Dial M to solve for $m_h = 125$
- 3. Quantify how finely-tuned that point is

Evans (UIUC) Flavor in EGMSB January 15, 2015 10 / 40

Tuning is ambiguous – quantifying an intrinsically qualitative measure e.g., vary with respect to F? \sqrt{F} ? F^2 ? $F^{\frac{3}{2}}$? F^{18} ? $\frac{F}{M}$? $\frac{F}{M^2}$? $\frac{F^2}{M^3}$? etc.

Tuning is ambiguous – quantifying an intrinsically qualitative measure e.g., vary with respect to F? \sqrt{F} ? F^2 ? $F^{\frac{3}{2}}$? F^{18} ? $\frac{F}{M}$? $\frac{F}{M^2}$? $\frac{F^2}{M^3}$? etc.

Our fine-tuning measure, Δ_{FT} , should

- 1. provide an accurate comparison between GMSB scenarios
- 2. never overlook contributions which cancel in a uncorrelated way
- 3. never introduce contributions which cancel in a correlated way
- 4. assign comparable sensitivity to uncorrelated terms which cancel

Tuning is ambiguous – quantifying an intrinsically qualitative measure e.g., vary with respect to F? \sqrt{F} ? F^2 ? $F^{\frac{3}{2}}$? F^{18} ? $\frac{F}{M}$? $\frac{F}{M^2}$? $\frac{F^2}{M^3}$? etc.

Our fine-tuning measure, Δ_{FT} , should

- 1. provide an accurate comparison between GMSB scenarios
- 2. never overlook contributions which cancel in a uncorrelated way
- 3. never introduce contributions which cancel in a correlated way
- 4. assign comparable sensitivity to uncorrelated terms which cancel

So, we choose the Barbieri-Guidice tuning measure: $\Delta_{FT} \equiv \max\{\Delta_i\}$ where $\Delta_i \equiv \frac{d \log m_z^2}{d \log \Lambda_i^2}$ with $\Lambda_i \in \{g_3^2 \Lambda, \ y_t^2 \Lambda, \ \kappa^2 \Lambda, \ \mu, \ \Lambda_{1-loop}\}$

Tuning is ambiguous – quantifying an intrinsically qualitative measure e.g., vary with respect to F? \sqrt{F} ? F^2 ? $F^{\frac{3}{2}}$? F^{18} ? $\frac{F}{M}$? $\frac{F}{M^2}$? $\frac{F^2}{M^3}$? etc.

Our fine-tuning measure, Δ_{FT} , should

- 1. provide an accurate comparison between GMSB scenarios
- 2. never overlook contributions which cancel in a uncorrelated way
- 3. never introduce contributions which cancel in a correlated way
- 4. assign comparable sensitivity to uncorrelated terms which cancel

So, we choose the Barbieri-Guidice tuning measure:
$$\Delta_{FT} \equiv \max\{\Delta_i\}$$
 where $\Delta_i \equiv \frac{d \log m_z^2}{d \log \Lambda_i^2}$ with $\Lambda_i \in \{g_3^2 \Lambda, \ y_t^2 \Lambda, \ \kappa^2 \Lambda, \ \mu, \ \Lambda_{1-loop}\}$ Varying Λ_{1-loop}^2 is varying $\frac{F^4}{M^6} h\left(\frac{F}{M^2}\right)$

Type I Higgs models have a "little $A-m_H$ problem" (Craig, Knapen, Shih, Zhao 2012)

$$A_{H_u} = -d_H \kappa^2 \tilde{\Lambda} \qquad \text{Note: } A_t = y_t \left(A_{H_u} + A_{Q_3} + A_{U_3} \right)$$

$$\delta m_{H_u}^2 = A_{H_u}^2 + d_H \kappa^2 \left(d_\phi \kappa^2 - 2 C_r g_r^2 - \frac{16\pi^2}{3} h \left(\frac{\Lambda}{M} \right) \frac{\Lambda^2}{M^2} \right) \tilde{\Lambda}^2$$

Increasing $A_t \Rightarrow$ increasing $m_{H_u}^2$

Type I Higgs models have a "little $A-m_H$ problem" (Craig, Knapen, Shih, Zhao 2012)

$$\begin{split} A_{H_u} &= -d_H \kappa^2 \tilde{\Lambda} & \text{Note: } A_t = y_t \left(A_{H_u} + A_{Q_3} + A_{U_3} \right) \\ \delta m_{H_u}^2 &= A_{H_u}^2 + d_H \kappa^2 \left(d_\phi \kappa^2 - 2 C_r g_r^2 - \frac{16 \pi^2}{3} h \left(\frac{\Lambda}{M} \right) \frac{\Lambda^2}{M^2} \right) \tilde{\Lambda}^2 \\ & \text{Increasing } A_t \Rightarrow \text{increasing } m_{H_u}^2 \\ & m_Z^2 \sim -2 \left(\mu^2 + m_{H_u}^2 \right) \end{split}$$

 $\Rightarrow \Delta \sim \frac{d \log m_z^2}{d \log A^2} = 2 \frac{A_t^2}{m^2} \sim 12 \frac{M_S^2}{m^2} \sim 3000$

Evans (UIUC) Flavor in EGMSB January 15, 2015 12 / 40

Type I Higgs models have a "little $A-m_H$ problem" (Craig, Knapen, Shih, Zhao 2012)

$$A_{H_u} = -d_H \kappa^2 \tilde{\Lambda} \qquad \text{Note: } A_t = y_t \left(A_{H_u} + A_{Q_3} + A_{U_3} \right)$$
$$\delta m_{H_u}^2 = A_{H_u}^2 + d_H \kappa^2 \left(d_\phi \kappa^2 - 2C_r g_r^2 - \frac{16\pi^2}{3} h \left(\frac{\Lambda}{M} \right) \frac{\Lambda^2}{M^2} \right) \tilde{\Lambda}^2$$

Increasing $A_t \Rightarrow \text{increasing } m_{H_u}^2$

$$m_Z^2 \sim -2\left(\mu^2 + m_{H_u}^2\right)$$

$$\Rightarrow \Delta \sim \frac{d \log m_z^2}{d \log A_t^2} = 2 \frac{A_t^2}{m_z^2} \sim 12 \frac{M_S^2}{m_z^2} \sim 3000$$

We expect tuning to be bad in these models!

Type I Higgs Tuning

Little $A-m_H$ problem tells us tuning should not approach $\Delta\sim 500$

Little $A-m_H$ problem tells us tuning should not approach $\Delta\sim 500$

Little $A-m_H$ problem tells us tuning should not approach $\Delta\sim 500$

At best, Type I Higgs has $\Delta \sim 2500~(5\times$ worse than best case MSSM)

(Much worse than this in models not shown!)

Evans (UIUC) Flavor in EGMSB January 15, 2015 13 / 40

Types of models

Tuning & Flavor

		Type		Т	ype II
	Higgs	<u>Q</u> -class	<u><i>U</i>-class</u>	w/ mixing	w/o mixing
	$\lambda H_u \Phi \tilde{\Phi}$	$\lambda Q \Phi ilde{\Phi}$	$\lambda U \Phi \tilde{\Phi}$	$\lambda H_u Q \Phi_U$	$\lambda \textit{UE}\Phi_{ar{D}}$
Tuning:	BAD	???	???	???	???
Flavor:	MFV	???	???	???	???

Evans (UIUC) Flavor in EGMSB January 15, 2015

14 / 40

EGMSB Soft Formulas

#	Model	d _Q	d_{ϕ}	C_r	#	Model	dυ	d_{ϕ}	C_r
1.8	$Q\phi_{ar{f 10},ar{m Q}}\phi_{ar{f 1},m S}$	N _m	7	$\left(\frac{1}{30}, \frac{3}{2}, \frac{8}{3}\right)$	I.12	$U\phi_{ar{f 10},ar{m U}}\phi_{ar{m 1},m S}$	N _m	4	$\left(\frac{8}{15},0,\frac{8}{3}\right)$
1.9	$Q\phi_{\bar{5},\mathbf{D}}\phi_{\bar{5},\mathbf{L}}$	Nm	5	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	1.13	$U\phi_{ar{f 5},m D}\phi_{ar{f 5},m D}$	2N _m	4	$\left(\frac{2}{5},0,4\right)$
1.10	$Q\phi_{10,U}\phi_{5,H_{U}}$	1	5	$\left(\frac{13}{30},\frac{3}{2},\frac{8}{3}\right)$	1.14	$U\phi_{{f 10},{m Q}}\phi_{{f 5},{m H_{m U}}}$	2	4	$\left(\frac{13}{30}, \frac{3}{2}, \frac{8}{3}\right)$
1.11	$Q\phi_{10,oldsymbol{Q}}\phi_{5,ar{oldsymbol{D}}}$	2	6	$\left(\frac{1}{10},\frac{3}{2},4\right)$	1.15	$U\phi_{10,\boldsymbol{E}}\phi_{5,ar{oldsymbol{D}}}$	1	4	$\left(\frac{14}{15},0,\frac{8}{3}\right)$

$$\begin{split} W &\sim \kappa Q \sum^{N_m} \Phi_i \tilde{\Phi}_i \qquad A_Q = -d_Q \kappa^2 \tilde{\Lambda} \\ \delta m_Q^2 &= d_Q \kappa^2 \left(\left(d_Q + d_\phi \right) \kappa^2 - 2 C_r g_r^2 - \frac{16 \pi^2}{3} h \left(\frac{\Lambda}{M} \right) \frac{\Lambda^2}{M^2} \right) \tilde{\Lambda}^2 \\ \delta m_{H_u}^2 &= -3 d_Q y_t^2 \kappa^2 \tilde{\Lambda}^2 \qquad \delta m_{H_d}^2 = -3 d_Q y_b^2 \kappa^2 \tilde{\Lambda}^2 \\ \delta m_U^2 &= -2 d_Q y_t^2 \kappa^2 \tilde{\Lambda}^2 \qquad \delta m_D^2 = -2 d_Q y_b^2 \kappa^2 \tilde{\Lambda}^2 \\ W &\sim \kappa U \sum^{N_m} \Phi_i \tilde{\Phi}_i \qquad A_U = -d_U \kappa^2 \tilde{\Lambda} \\ \delta m_U^2 &= d_U \kappa^2 \left(\left(d_U + d_\phi \right) \kappa^2 - 2 C_r g_r^2 - \frac{16 \pi^2}{3} h \left(\frac{\Lambda}{M} \right) \frac{\Lambda^2}{M^2} \right) \tilde{\Lambda}^2 \\ \delta m_Q^2 &= -d_U y_t^2 \kappa^2 \tilde{\Lambda}^2 \qquad \delta m_{H_u}^2 = -3 d_U y_t^2 \kappa^2 \tilde{\Lambda}^2 \end{split}$$

EGMSB Soft Formulas

#	Model	d _Q	d_{ϕ}	C_r	#	Model	dυ	d_{ϕ}	C _r
1.8	$Q\phi_{ar{f 10},ar{m Q}}\phi_{f 1,m S}$	N _m	7	$\left(\frac{1}{30}, \frac{3}{2}, \frac{8}{3}\right)$	I.12	$U\phi_{ar{f I}m 0,ar{m U}}\phi_{m 1,m S}$	N _m	4	$\left(\frac{8}{15},0,\frac{8}{3}\right)$
1.9	$Q\phi_{\bar{5},\mathbf{D}}\phi_{\bar{5},\mathbf{L}}$	Nm	5	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	1.13	$U\phi_{ar{f 5},m D}\phi_{ar{f 5},m D}$	2N _m	4	$\left(\frac{2}{5},0,4\right)$
1.10	$Q\phi_{10,U}\phi_{5,H_{U}}$	1	5	$\left(\frac{13}{30},\frac{3}{2},\frac{8}{3}\right)$	1.14	$U\phi_{f 10,Q}\phi_{f 5,H_{f U}}$	2	4	$\left(\frac{13}{30}, \frac{3}{2}, \frac{8}{3}\right)$
1.11	$Q\phi_{f 10}, Q\phi_{f 5,ar D}$	2	6	$\left(\frac{1}{10},\frac{3}{2},4\right)$	l.15	$U\phi_{f 10,E}\phi_{f 5,ar D}$	1	4	$(\frac{14}{15}, 0, \frac{8}{3})$

$$W \sim \kappa Q \sum_{i}^{N_{m}} \Phi_{i} \tilde{\Phi}_{i} \qquad A_{Q} = -d_{Q} \kappa^{2} \tilde{\Lambda}$$

$$\delta m_{Q}^{2} = d_{Q} \kappa^{2} \left((d_{Q} + d_{\phi}) \kappa^{2} - 2C_{r} g_{r}^{2} - \frac{16\pi^{2}}{3} h \left(\frac{\Lambda}{M} \right) \frac{\Lambda^{2}}{M^{2}} \right) \tilde{\Lambda}^{2}$$

$$\delta m_{H_{u}}^{2} = -3d_{Q} y_{t}^{2} \kappa^{2} \tilde{\Lambda}^{2} \qquad \delta m_{H_{d}}^{2} = -3d_{Q} y_{b}^{2} \kappa^{2} \tilde{\Lambda}^{2}$$

$$\delta m_{U}^{2} = -2d_{Q} y_{t}^{2} \kappa^{2} \tilde{\Lambda}^{2} \qquad \delta m_{D}^{2} = -2d_{Q} y_{b}^{2} \kappa^{2} \tilde{\Lambda}^{2}$$

$$W \sim \kappa U \sum_{i}^{N_{m}} \Phi_{i} \tilde{\Phi}_{i} \qquad A_{U} = -d_{U} \kappa^{2} \tilde{\Lambda}$$

$$\delta m_{U}^{2} = d_{U} \kappa^{2} \left((d_{U} + d_{\phi}) \kappa^{2} - 2C_{r} g_{r}^{2} - \frac{16\pi^{2}}{3} h \left(\frac{\Lambda}{M} \right) \frac{\Lambda^{2}}{M^{2}} \right) \tilde{\Lambda}^{2}$$

$$\delta m_{Q}^{2} = -d_{U} y_{t}^{2} \kappa^{2} \tilde{\Lambda}^{2} \qquad \delta m_{H}^{2} = -3d_{U} y_{t}^{2} \kappa^{2} \tilde{\Lambda}^{2}$$

Little $A - m_{\tilde{t}}$? Not a problem!

All Type I squark models similar, near $\Delta_{FT} \sim 1000~(2 imes~the~best~MSSM)$

Tuning

All Type I squark models similar, near $\Delta_{FT}\sim 1000~(2\times$ the best MSSM) Best region right before 1-loop term drives m_Q^2 tachyonic

Evans (UIUC) Flavor in EGMSB January 15, 2015 16 / 40

Tuning

All Type I squark models similar, near $\Delta_{FT} \sim 1000$ (2× the best MSSM)

Best region right before 1-loop term drives m_Q^2 tachyonic

Good region before rising κ drives m_U^2 tachyonic

Evans (UIUC) Flavor in EGMSB January 15, 2015 16 / 40

#	Coupling	$ \Delta b $	Best Point $\{\frac{\Lambda}{M}, \lambda\}$	$ A_t /M_S$	M _g	Ms	$ \mu $	Tuning
1.1	$H_{\boldsymbol{u}}\phi_{\bar{5},\boldsymbol{L}}\phi_{1,\boldsymbol{S}}$	Nm	{0.375, 1.075}	1.98	3222	1842	777	3400
1.2	$H_{u}\phi_{10,Q}\phi_{10,U}$	3N _m	{0.25, 1.075}	1.99	3178	1828	789	2450
1.3	$H_{\mathbf{u}}\phi_{5,\bar{\mathbf{D}}}\phi_{\bar{10},\bar{\mathbf{Q}}}$	4	{0.25, 1.3}	2.05	2899	1709	668	3200
1.4	$H_{\boldsymbol{u}}\phi_{5,\bar{\boldsymbol{L}}}\phi_{10,\bar{\boldsymbol{E}}}$	4	{0.125, 0.95}	0.58	11134	8993	2264	4050
1.5	$H_{\mathbf{u}}\phi_{\bar{5},\mathbf{L}}\phi_{24,5}$	6	{0.225, 1.000}	0.54	13290	9785	3408	3850
1.6	$H_{u}\phi_{\bar{5},L}\phi_{24,W}$	6	{0.15, 1.025}	0.67	11835	8637	3259	3410
1.7	$H_{\mathbf{u}}\phi_{\bar{5},\mathbf{D}}\phi_{24,\mathbf{X}}$	6	{0.3, 1.425}	2.04	3020	1743	576	3500
1.8	$Q\phi_{ar{f 10},ar{m Q}}\phi_{f 1,m S}$	3N _m	{0.534, 1.5}	2.82	4336	1274	2056	1015
1.9	$Q\phi_{\bar{5},\mathbf{D}}\phi_{\bar{5},\mathbf{L}}$	Nm	{0.353, 0.858}	2.67	4247	1342	2058	1015
1.10	$Q\phi_{10}, U\phi_{5}, H_{II}$	4	{0.51, 1.788}	2.65	4040	1318	2301	1275
1.11	$Q\phi_{10}, Q\phi_{5,\bar{D}}$	4	{0.378, 1.245}	2.76	4020	1257	2292	1260
1.12	$U\phi_{ar{f I}ar{f O},ar{m U}}\phi_{ar{f I},ar{m S}}$	3N _m	{0.476, 1.622}	2.62	3815	1347	2070	1030
1.13	$U\phi_{\bar{5},\mathbf{D}}\phi_{\bar{5},\mathbf{D}}$	2N _m	{0.301, 0.908}	2.91	3829	1199	2061	1020
1.14	$U\phi_{10,Q}\phi_{5,H_{II}}$	4	{0.37, 1.352}	2.81	3575	1220	2312	1285
1.15	$U\phi_{10,\boldsymbol{E}}\phi_{5,\bar{\boldsymbol{D}}}$	4	{0.51, 1.972}	2.63	3526	1312	2310	1280

Types of models

Tuning & Flavor

		Type I		Т	ype II
	Higgs	<u>Q</u> -class	<u>U-class</u>	w/ mixing	w/o mixing
	$\lambda H_u \Phi \tilde{\Phi}$	$\lambda Q \Phi \tilde{\Phi}$	$\lambda U \Phi \tilde{\Phi}$	$\lambda H_u Q \Phi_U$	$\lambda \textit{UE}\Phi_{ar{D}}$
Tuning:	BAD	GOOD	GOOD	???	???
Flavor:	MFV	???	???	???	???

Evans (UIUC) Flavor in EGMSB January 15, 2015 18 / 40

EGMSB Formulas

#	Model	d ₁	d_2	d ₃	C_r	#	Model	d ₁	d ₂	d ₃	C _r
II.1	$QU\phi_{5,H_{II}}$	1	2	3	$\left(\frac{13}{30},\frac{3}{2},\frac{8}{3}\right)$	11.9	$UE\phi_{5,ar{D}}$	1	3	1	$\left(\frac{14}{15},0,\frac{8}{3}\right)$
II.2	$UH_{\boldsymbol{u}}\phi_{10,\boldsymbol{Q}}$	2	3	1	$\left(\frac{13}{30}, \frac{3}{2}, \frac{8}{3}\right)$	II.10	$H_{\mathbf{u}}D\phi_{24,\mathbf{X}}$	3	2	1	$\left(\frac{19}{30},\frac{3}{2},\frac{8}{3}\right)$
II.3	$QH_{\mathbf{U}}\phi_{10,\mathbf{U}}$	1	3	2	$\left(\frac{13}{30}, \frac{3}{2}, \frac{8}{3}\right)$	II.11	$H_{\boldsymbol{u}}L\phi_{1,\boldsymbol{S}}$	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
11.4	QDφ _{5,H}	1	2	3	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	II.12	H _u Lφ _{24,} ς	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
11.5	$QH_d\phi_{\bar{5},D}$	1	3	2	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	II.13	$H_{u}L\phi_{24,W}$	3 2	32	1	$\left(\frac{3}{10},\frac{7}{2},0\right)$
II.6	$QQ\phi_{5,ar{\mathbf{D}}}$	2	2	4	$\left(\frac{1}{10},\frac{3}{2},4\right)$	II.14	$H_{\boldsymbol{u}}H_{\boldsymbol{d}}\phi_{1,\boldsymbol{S}}$	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
11.7	$UD\phi_{ar{f 5},m D}$	2	2	2	$\left(\frac{2}{5},0,4\right)$	II.15	$H_{u}H_{d}\phi_{24,S}$	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
II.8	$QL\phi_{ar{f 5},m D}$	1	3	2	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	II.16	$H_uH_d\phi_{24,W}$	3 2	3 2	1	$\left(\frac{3}{10},\frac{7}{2},0\right)$

$$W \sim \kappa X_1 X_2 \phi_{X_3}$$

$$\delta m_{X_{1}}^{2} = \left(d_{1}\left(\sum_{i}d_{i}\kappa^{2} - 2C_{r}g_{r}^{2} - \frac{8\pi^{2}}{3}h\left(\frac{\Lambda}{M}\right)\frac{\Lambda^{2}}{M^{2}}\right) + 2d_{1}d_{3}y_{123}^{2} - d_{1}^{2p}d_{2}y_{12p}^{2} + \frac{1}{2}d_{1}d_{2}^{pq}y_{2pq}^{2}\right)\kappa^{2}\tilde{\Lambda}^{2}$$

$$\delta m_{X_{2}}^{2} = \delta m_{X_{1}}^{2}\left\{1 \leftrightarrow 2\right\}$$

$$\delta m_{X_{a}}^{2} = -\left(d_{a}^{1p}d_{1}y_{1ap}^{2} + d_{a}^{2p}d_{2}y_{2ap}^{2}\right)\kappa^{2}\tilde{\Lambda}^{2}$$

$$A_{X_{1,2}} = -d_{1,2}\kappa^{2}\tilde{\Lambda} \qquad A_{t} = y_{t}\left(A_{H_{tt}} + A_{Q_{3}} + A_{U_{3}}\right)$$

Evans (UIUC) Flavor in EGMSB January 15, 2015 19 / 40

EGMSB Formulas

#	Model	d ₁	d ₂	d ₃	C _r	#	Model	d ₁	d ₂	d ₃	Cr
II.1	$QU\phi_{5,H_{II}}$	1	2	3	$\left(\frac{13}{30},\frac{3}{2},\frac{8}{3}\right)$	11.9	$UE\phi_{f 5,ar D}$	1	3	1	$\left(\frac{14}{15},0,\frac{8}{3}\right)$
II.2	$UH_{\boldsymbol{u}}\phi_{10,\boldsymbol{Q}}$	2	3	1	$\left(\frac{13}{30},\frac{3}{2},\frac{8}{3}\right)$	II.10	$H_{u}D\phi_{24,X}$	3	2	1	$\left(\begin{array}{c} 19\\ \overline{30} \end{array}, \begin{array}{c} 3\\ \overline{2} \end{array}, \begin{array}{c} 8\\ \overline{3} \end{array}\right)$
II.3	$QH_{\mathbf{U}}\phi_{10,\mathbf{U}}$	1	3	2	$\left(\frac{13}{30}, \frac{3}{2}, \frac{8}{3}\right)$	II.11	$H_{m{u}}L\phi_{m{1},m{S}}$	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
11.4	QDφ _{5,H}	1	2	3	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	II.12	H _u Lφ _{24,5}	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
11.5	$QH_d\phi_{\bar{5},D}$	1	3	2	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	II.13	$H_{u}L\phi_{24,W}$	3 2	3 2	1	$\left(\frac{3}{10},\frac{7}{2},0\right)$
11.6	$QQ\phi_{5,ar{\mathbf{D}}}$	2	2	4	$\left(\frac{1}{10},\frac{3}{2},4\right)$	II.14	$H_{\boldsymbol{u}}H_{\boldsymbol{d}}\phi_{1,\boldsymbol{S}}$	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
11.7	$UD\phi_{ar{f 5},m D}$	2	2	2	$\left(\frac{2}{5},0,4\right)$	II.15	$H_{u}H_{d}\phi_{24,S}$	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
II.8	$QL\phi_{ar{f 5},m D}$	1	3	2	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	II.16	$H_{\mathbf{u}}H_{\mathbf{d}}\phi_{24,\mathbf{W}}$	3 2	<u>3</u>	1	$\left(\frac{3}{10},\frac{7}{2},0\right)$

$$VV \sim \kappa \Lambda_1 \Lambda_2 \phi \chi_3$$
 only present with MSSM-Messenger mixing

$$W \sim \kappa X_1 X_2 \phi_{X_3} \text{ only present with MSSM-Messenger mixing} \\ \delta m_{X_1}^2 = \left(d_1 \left(\sum_i d_i \kappa^2 - 2 C_r g_r^2 - \frac{8\pi^2}{3} h \left(\frac{\Lambda}{M} \right) \frac{\Lambda^2}{M^2} \right) + 2 d_1 d_3 y_{123}^2 - d_1^{2p} d_2 y_{12p}^2 + \frac{1}{2} d_1 d_2^{pq} y_{2pq}^2 \right) \kappa^2 \tilde{\Lambda}^2 \\ \delta m_{X_2}^2 = \delta m_{X_1}^2 \{ 1 \leftrightarrow 2 \} \\ \delta m_{X_2}^2 = - \left(d_3^{1p} d_1 y_{1ap}^2 + d_3^{2p} d_2 y_{2ap}^2 \right) \kappa^2 \tilde{\Lambda}^2$$

$$A_{X_{1,2}} = -d_{1,2}\kappa^2\tilde{\Lambda}$$
 $A_t = y_t (A_{H_t} + A_{O_2} + A_{U_2})$

EGMSB Formulas

#	Model	d ₁	d ₂	d ₃	C_r	#	Model	d ₁	d ₂	d ₃	Cr
II.1	$QU\phi_{5,\mathbf{H_{u}}}$	1	2	3	$\left(\frac{13}{30},\frac{3}{2},\frac{8}{3}\right)$	11.9	<i>UE</i> φ _{5, D}	1	3	1	$\left(\frac{14}{15},0,\frac{8}{3}\right)$
II.2	$UH_{m{u}}\phi_{m{10},m{Q}}$	2	3	1	$\left(\frac{13}{30},\frac{3}{2},\frac{8}{3}\right)$	II.10	$H_{u}D\phi_{24,X}$	3	2	1	$\left(\frac{19}{30},\frac{3}{2},\frac{8}{3}\right)$
II.3	$QH_{\mathbf{U}}\phi_{10,\mathbf{U}}$	1	3	2	$\left(\frac{13}{30},\frac{3}{2},\frac{8}{3}\right)$	II.11	$H_{m{u}}L\phi_{m{1},m{S}}$	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
11.4	QDφ _{5,H}	1	2	3	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	II.12	H _u Lφ _{24,5}	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
II.5	$QH_{d}\phi_{\bar{5},D}$	1	3	2	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	II.13	$H_{u}L\phi_{24,W}$	3 2	32	1	$\left(\frac{3}{10},\frac{7}{2},0\right)$
II.6 ($QQ\phi_{f 5,ar D}$	2	2	4	$\left(\frac{1}{10},\frac{3}{2},4\right)$	II.14	$H_{\boldsymbol{u}}H_{\boldsymbol{d}}\phi_{1,\boldsymbol{S}}$	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
11.7	$UD\phi_{ar{f 5},m D}$	2	2	2	$\left(\frac{2}{5},0,4\right)$	II.15	$H_{u}H_{d}\phi_{24,S}$	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
II.8	$QL\phi_{ar{f 5},m D}$	1	3	2	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	II.16	$H_{u}H_{d}\phi_{24,W}$	3 2	3 2	1	$\left(\frac{3}{10},\frac{7}{2},0\right)$

$$W \sim \kappa X_1 X_2 \phi_{X_3} \text{ only present with MSSM-Messenger mixing}$$

$$\delta m_{X_1}^2 = \left(d_1 \left(\sum_i d_i \kappa^2 - 2C_r g_r^2 - \frac{8\pi^2}{3} h\left(\frac{\Lambda}{M}\right) \frac{\Lambda^2}{M^2}\right) + 2d_1 d_3 y_{123}^2 - d_1^{2p} d_2 y_{12p}^2 + \frac{1}{2} d_1 d_2^{pq} y_{2pq}^2\right) \kappa^2 \tilde{\Lambda}^2$$

$$\delta m_{X_1}^2 = \left(d_1 \left(\sum_i d_i \kappa^2 - 2C_r g_r^2 - \frac{8\pi^2}{3} h\left(\frac{\Lambda}{M}\right) \frac{\Lambda^2}{M^2} \right) + 2d_1 d_3 y_{123}^2 - d_1^{2p} d_2 y_{12p}^2 + \frac{1}{2} d_1 d_2^{pq} y_{2pq}^2 \right) \kappa^2 \tilde{\Lambda}^2$$

$$\delta m_{X_2}^2 = \delta m_{X_1}^2 \{ 1 \leftrightarrow 2 \}$$

$$\delta m_{X_a}^2 = -\left(d_a^{1p}d_1y_{1ap}^2 + d_a^{2p}d_2y_{2ap}^2\right)\kappa^2\tilde{\Lambda}^2$$

$$A_{\pmb{X_{1,2}}} = -d_{1,2}\kappa^2\tilde{\pmb{\Lambda}} \qquad A_t = y_t\left(A_{\pmb{H_u}} + A_{\pmb{Q_3}} + A_{\pmb{U_3}}\right) \longleftarrow \text{double contribution to } \pmb{A_t}$$

Evans (UIUC) Flavor in EGMSB January 15, 2015 19 / 40

EGMSB Formulas

#	Model	d ₁	d_2	d ₃	C_r	#	Model	d ₁	d ₂	d ₃	C _r
II.1	$QU\phi_{5,\mathbf{H_{u}}}$	1	2	3	$\left(\frac{13}{30}, \frac{3}{2}, \frac{8}{3}\right)$	11.9	$UE\phi_{f 5,ar D}$	1	3	1	$\left(\frac{14}{15},0,\frac{8}{3}\right)$
II.2	$UH_{f u}\phi_{{f 10},{m Q}}$	2	3	1	$\left(\frac{13}{30},\frac{3}{2},\frac{8}{3}\right)$	II.10	$H_{\mathbf{u}}D\phi_{24,\mathbf{X}}$	3	2	1	$\left(\frac{19}{30},\frac{3}{2},\frac{8}{3}\right)$
II.3	$QH_{f u}\phi_{{f 10},{f U}}$	1	3	2	$\left(\frac{13}{30},\frac{3}{2},\frac{8}{3}\right)$	II.11	$H_{m{u}}L\phi_{m{1},m{S}}$	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
11.4	QDφ _{5,H}	1	2	3	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	II.12	$H_{f u} L\phi_{f 24,S}$	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
11.5	$QH_{d}\phi_{\bar{5},D}$	1	3	2	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	II.13	$H_{u}L\phi_{24,W}$	3 2	32	1	$\left(\frac{3}{10},\frac{7}{2},0\right)$
11.6	ر المراجعة	2	2	4	$\left(\frac{1}{10},\frac{3}{2},4\right)$	II.14	$H_{m{u}}H_{m{d}}\phi_{m{1},m{S}}$	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
11.7	$UD\phi_{ar{f 5},m D}$	2	2	2	$\left(\frac{2}{5},0,4\right)$	II.15	$H_{m{u}}H_{m{d}}\phi_{m{24},m{5}}$	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
11.8	$QL\phi_{ar{f 5},m D}$	1	3	2	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	II.16	$H_{u}H_{d}\phi_{24,W}$	3 2	3 2	1	$\left(\frac{3}{10},\frac{7}{2},0\right)$

Tachyons everywhere at high κ

EGMSB Formulas

#	Model	d ₁	d ₂	d ₃	C_r	#	Model	d ₁	d ₂	d ₃	C_r
II.1	$QU\phi_{5,\mathbf{H_{u}}}$	1	2	3	$\left(\frac{13}{30}, \frac{3}{2}, \frac{8}{3}\right)$	11.9	$UE\phi_{f 5,ar D}$	1	3	1	$\left(\frac{14}{15},0,\frac{8}{3}\right)$
II.2	$UH_{m{u}}\phi_{m{10},m{Q}}$	2	3	1	$\left(\frac{13}{30},\frac{3}{2},\frac{8}{3}\right)$	II.10	$H_{u}D\phi_{24,X}$	3	2	1	$\left(\frac{19}{30},\frac{3}{2},\frac{8}{3}\right)$
II.3	$QH_{\mathbf{U}}\phi_{10,\mathbf{U}}$	1	3	2	$\left(\frac{13}{30}, \frac{3}{2}, \frac{8}{3}\right)$	II.11	$H_{\mathbf{u}} L \phi_{1,5}$	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
11.4	QDφ _{Ē,H}	1	2	3	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	II.12	Hu L 124,5	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
11.5	$QH_{d}\phi_{\bar{5},D}$	1	3	2	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	II.13	$\mu_{u}L\phi_{24,\mathbf{W}}$	3 2	32	1	$\left(\frac{3}{10},\frac{7}{2},0\right)$
11.6	(D) (S)	2	2	4	$\left(\frac{1}{10},\frac{3}{2},4\right)$	II.14	$H_{m{u}}H_{m{d}}\phi_{m{1},m{S}}$	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
11.7	$UD\phi_{ar{f 5},m D}$	2	2	2	$\left(\frac{2}{5},0,4\right)$	II.15	$H_{u}H_{d}\phi_{24,S}$	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
11.8	$QL\phi_{ar{f 5},m D}$	1	3	2	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	II.16	$H_{u}H_{d}\phi_{24,W}$	<u>3</u>	<u>3</u>	1	$\left(\frac{3}{10},\frac{7}{2},0\right)$

Tachyons everywhere at high κ

 m_{ν} too large

EGMSB Formulas

#	Model	d ₁	d ₂	d ₃	C_r	#	Model	d ₁	d ₂	d ₃	C _r
II.1	$QU\phi_{5,\mathbf{H_{u}}}$	1	2	3	$\left(\frac{13}{30}, \frac{3}{2}, \frac{8}{3}\right)$	11.9	$UE\phi_{f 5,ar D}$	1	3	1	$\left(\frac{14}{15},0,\frac{8}{3}\right)$
II.2	$UH_{f u}\phi_{{f 10},{m Q}}$	2	3	1	$\left(\frac{13}{30}, \frac{3}{2}, \frac{8}{3}\right)$	II.10	$H_{\boldsymbol{u}}D\phi_{24,oldsymbol{X}}$	3	2	1	$\left(\frac{19}{30},\frac{3}{2},\frac{8}{3}\right)$
II.3	$QH_{f u}\phi_{{f 10},{f U}}$	1	3	2	$\left(\frac{13}{30}, \frac{3}{2}, \frac{8}{3}\right)$	II.11	$H_{u}L\phi_{1,\sigma}$	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
II.4	$QD\phi_{\bar{5},H_d}$	1	2	3	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	II.12	Hul (24,5	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
11.5	$QH_{\mathbf{d}}\phi_{\mathbf{\bar{5}},\mathbf{D}}$	1	3	2	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	II.13	$H_{\mathbf{u}}L\phi_{24,\mathbf{W}}$	3 2	32	1	$\left(\frac{3}{10},\frac{7}{2},0\right)$
II.6 (2	2	4	$\left(\frac{1}{10},\frac{3}{2},4\right)$	II.14	$H_{m{u}}H_{m{d}}\phi_{m{1}}$	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
11.7	$UD\phi_{ar{f 5},m D}$	2	2	2	$\left(\frac{2}{5},0,4\right)$	II.15	HuHy⊅24,5	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
II.8	$QL\phi_{ar{f 5},m D}$	1	3	2	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	II.16	$H_dH_d\phi_{24,W}$	<u>3</u>	<u>3</u>	1	$\left(\frac{3}{10},\frac{7}{2},0\right)$

Tachyons everywhere at high κ

 m_{ν} too large

Exacerbate $\mu-B_{\mu}$ problem

EGMSB Formulas

#	Model	d ₁	d_2	d ₃	C_r	#	Model	d ₁	d ₂	d ₃	C _r
II.1	$QU\phi_{5,\mathbf{H_{u}}}$	1	2	3	$\left(\frac{13}{30}, \frac{3}{2}, \frac{8}{3}\right)$	II.9	UEφ _{5,} D	1	3	1	$\left(\frac{14}{15},0,\frac{8}{3}\right)$
II.2	$UH_{m{u}}\phi_{m{10},m{Q}}$	2	3	1	$\left(\frac{13}{30}, \frac{3}{2}, \frac{8}{3}\right)$	II.10	Η ₄ Dφ ₂₄ χ	3	2	1	$\left(\frac{19}{30},\frac{3}{2},\frac{8}{3}\right)$
II.3	$QH_{\mathbf{U}}\phi_{10,\mathbf{U}}$	1	3	2	$\left(\frac{13}{30},\frac{3}{2},\frac{8}{3}\right)$	II.11	Η Lφ-	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
11.4	$QD\phi_{\bar{5},H_d}$	1	2	3	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	II.12	Hul 24,5	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
11.5	QH PE,D	1	3	2	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	II.13	Hulpha, W	3 2	32	1	$\left(\frac{3}{10},\frac{7}{2},0\right)$
11.6		2	2	4	$\left(\frac{1}{10},\frac{3}{2},4\right)$	II.14	H_0H_0	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
11.7	$UD\phi_{ar{f 5},m D}$	2	2	2	$\left(\frac{2}{5},0,4\right)$	II.15	H A 22.5	1	1	2	$\left(\frac{3}{10},\frac{3}{2},0\right)$
11.8	Qi ∜_n	1	3	2	$\left(\frac{7}{30},\frac{3}{2},\frac{8}{3}\right)$	II.16	$H_dH_d\phi_{24}V$	3 2	3 2	1	$\left(\frac{3}{10},\frac{7}{2},0\right)$

Tachyons everywhere at high κ

 m_{ν} too large

Exacerbate $\mu - B_{\mu}$ problem

Tuning bad

 $\Delta_{FT} \sim 1800 \; (3.5 \times \; \text{best MSSM})$

 $\Delta_{FT} \sim$ 2150 (4× best MSSM)

 $\Delta_{FT} \sim 850 \; (1.5 \times \; \text{best MSSM!})$

 $\Delta_{FT} \sim 1500 \; (3 \times \; \text{best MSSM})$

#	Coupling	$ \Delta b $	Best Point $\{\frac{\Lambda}{M}, \lambda\}$	$ A_t /M_S$	M _g	M _S	$ \mu $	Tuning
II.1	$QU\phi_{5,H_{II}}$	1	{0.55, 1.64}	2.02	769	1965	2738	1800
11.2	$UH_{\mathbf{u}}\phi_{10,\mathbf{Q}}$	3	{0.009, 1.067}	2.14	2203	1628	543	850
II.3	$QH_{\mathbf{U}}\phi_{10,\mathbf{U}}$	3	{0.269, 1.05}	2.27	2514	1458	439	1500
11.4	$QD\phi_{\bar{5},H_d}$	1	{0.37, 1.2}	1.78	2597	1829	3553	3020
11.5	$QH_{d}\phi_{\bar{5},\mathbf{D}}$	1	{0.15, 1.19}	1.45	2497	2108	3773	6050
11.6	$QQ\phi_{5,\bar{D}}$	1	{0.45, 0.1}	0.22	7943	9870	3610	5000
11.7	$UD\phi_{\bar{5},D}$	1	{0.21, 1.26}	2.34	1374	1334	2998	2150
11.8	$QL\phi_{ar{f 5},m D}$	1	{0.14, 1.2}	1.51	1501	1204	2203	3700
11.9	$UE\phi_{5,\bar{D}}$	1	{0.445, 1.46}	1.89	2004	1750	3373	2730
II.10	$H_{\mathbf{u}}D\phi_{24,\mathbf{X}}$	5	{0.42, 1.45}	2.13	2943	1649	282	3500
II.11	$H_{\mathbf{u}} L \phi_{1, \mathbf{S}}$	1*	{0.15, 0.675}	0.54	7103	8166	3714	4930
II.12	$H_{\mathbf{u}} L\phi_{24,5}$	5	{0.296, 0.96}	0.53	12629	9660	3333	3780
II.13	$H_{\mathbf{u}} L\phi_{24, \mathbf{W}}$	5	{0.212, 0.96}	0.65	11487	8710	3687	3380
II.14	$H_{\mathbf{u}}H_{\mathbf{d}}\phi_{1,\mathbf{S}}$	1*	{0.125, 0.675}	0.55	7049	8051	3255	5000
II.15	$H_{\mathbf{u}}H_{\mathbf{d}}^{\mathbf{u}}\phi_{24,5}$	5	{0.20, 1.00}	0.57	12047	9213	1628	4220
II.16	$H_{\mathbf{d}}H_{\mathbf{d}}^{\mathbf{d}}\phi_{24,\mathbf{W}}$	5	{0.2, 0.946}	0.64	11571	8789	3665	3460

Types of models

Tuning & Flavor

		Type		Type II		
	Higgs	Q -class	<u>U-class</u>	w/ mixing	w/o mixing	
	$\lambda H_u \Phi \tilde{\Phi}$	$\lambda Q \Phi ilde{\Phi}$	$\lambda U \Phi \tilde{\Phi}$	$\lambda H_u Q \Phi_U$	$\lambda \textit{UE}\Phi_{ar{D}}$	
Tuning:	BAD	GOOD	GOOD	GOOD	BAD	
Flavor:	MFV	???	???	???	???	

Evans (UIUC) Flavor in EGMSB January 15, 2015 23 / 40

Types of models

Tuning & Flavor

		Type		Type II		
	Higgs	Q -class	<u><i>U</i>-class</u>	w/ mixing	w/o mixing	
	$\lambda H_u \Phi \tilde{\Phi}$	$\lambda Q \Phi \tilde{\Phi}$	$\lambda U \Phi ilde{\Phi}$	$\lambda H_u Q \Phi_U$	$\lambda \textit{UE}\Phi_{ar{D}}$	
Tuning:	BAD	GOOD	GOOD	GOOD	BAD	
Flavor:	MFV	???	???	???	DON'T CARE!	

Evans (UIUC) Flavor in EGMSB January 15, 2015 23 / 40

Spectra

Spectra

LHC Phenomenology

Spectra

Phenomenology

Features

In general, heavy spectra!

Are $m_h = 125$ GeV and no SUSY at 8 TeV really correlated problems?

In general, heavy spectra!

Are $m_h = 125$ GeV and no SUSY at 8 TeV really correlated problems?

- 1. \tilde{t} NLSP or co-NLSP (bounds reach 750 GeV now)
- 2. $\tilde{t}: \tilde{B}: \tilde{\ell}$ Decays of $\tilde{t} \to t\tilde{\chi}^0 \to t\ell^{\pm}\tilde{\ell}^{\mp} \to t\ell^{\pm}\tilde{\tau}^{\mp} \Rightarrow$ multieptons
- 3. $\tilde{t}: \tilde{\ell} \tilde{t} \to b\nu\tilde{\tau}^+ \to b\nu\tau^+\tilde{G} \Rightarrow bb\tau^+\tau^- + \not\!\!\!/ \!\!\!\!/ \!\!\!\!/ T$

Last case especially exciting!

In general, heavy spectra!

Are $m_h = 125$ GeV and no SUSY at 8 TeV really correlated problems?

- 1. \tilde{t} NLSP or co-NLSP (bounds reach 750 GeV now)
- 2. $\tilde{t}: \tilde{B}: \tilde{\ell}$ Decays of $\tilde{t} \to t\tilde{\chi}^0 \to t\ell^{\pm}\tilde{\ell}^{\mp} \to t\ell^{\pm}\tilde{\tau}^{\mp} \Rightarrow$ multieptons
- 3. $\tilde{t}: \tilde{\ell} \tilde{t} \to b\nu\tilde{\tau}^+ \to b\nu\tau^+\tilde{G} \Rightarrow bb\tau^+\tau^- + \not\!\!\!/ \!\!\!\!/ \!\!\!\!/ T$

Last case especially exciting!

Now on to flavor!

Lightning Flavor Review The SM

In the SM, flavor is only violated by the CKM -W charged current

To constrain NP, flavor observables that vanish at tree level in SM are best

Small CKM and GIM suppress many further

In the SM, flavor is only violated by the CKM – W charged current

To constrain NP, flavor observables that vanish at tree level in SM are best

Small CKM and GIM suppress many further

Observable	Experiment	SM prediction		
Δm_K	$(3.484 \pm 0.006) \times 10^{-15} \text{ GeV}$	_*		
Δm_{B_d}	$(3.36 \pm 0.02) \times 10^{-13} \text{ GeV}$	$(3.56 \pm 0.60) \times 10^{-13} \text{ GeV}$		
Δm_{B_s}	$(1.169 \pm 0.0014) \times 10^{-11} \text{ GeV}$	$(1.13 \pm 0.17) \times 10^{-11} \text{ GeV}$		
Δm_D	$(6.2^{+2.7}_{-2.8}) \times 10^{-15} \text{ GeV}$	_		
$Br(K^+ o \pi^+ u \bar{ u})$	$(1.7 \pm 1.1) \times 10^{-10}$	$(7.8 \pm 0.8) \times 10^{-11}$		
$Br(B o X_s \gamma)$	$(3.40 \pm 0.21) \times 10^{-4}$	$(3.15 \pm 0.23) imes 10^{-4}$		
$Br(B \rightarrow X_d \gamma)$	$(1.41\pm0.57) imes10^{-5}$	$(1.54^{+0.26}_{-0.31}) imes 10^{-5}$		
$Br(B_s o \mu^+\mu^-)$	$(2.9 \pm 0.7) imes 10^{-9}$	$(3.65 \pm 0.23) imes 10^{-9}$		
$Br(B_d o \mu^+\mu^-)$	$(3.6^{+1.6}_{-1.4}) \times 10^{-10}$	$(1.06 \pm 0.09) \times 10^{-10}$		

- ▶ Dimension 5: $\frac{1}{\Lambda}\bar{q}_1\sigma^{\mu\nu}q_2F_{\mu\nu}$, $\frac{1}{\Lambda}\bar{q}_1\sigma^{\mu\nu}q_2G_{\mu\nu}$
 - ▶ Radiative $\Delta F = 1$: $b \rightarrow s\gamma$, $b \rightarrow d\gamma$

- ▶ Dimension 5: $\frac{1}{\Lambda}\bar{q}_1\sigma^{\mu\nu}q_2F_{\mu\nu}$, $\frac{1}{\Lambda}\bar{q}_1\sigma^{\mu\nu}q_2G_{\mu\nu}$
 - ▶ Radiative $\Delta F = 1$: $b \rightarrow s\gamma$, $b \rightarrow d\gamma$
- ▶ Hadronic Dimension 6: $\frac{1}{\Lambda^2} (\bar{q}_1 q_2) (\bar{q}_3 q_4)$, $\frac{1}{\Lambda^2} (\bar{q}_1 \gamma_\mu q_2) (\bar{q}_3 \gamma^\mu q_4)$, etc.
 - ▶ Meson Mixing $\Delta F = 2$: Δm_K , Δm_D , Δm_{B_s} , Δm_{B_d}

- ▶ Dimension 5: $\frac{1}{\Lambda}\bar{q}_1\sigma^{\mu\nu}q_2F_{\mu\nu}$, $\frac{1}{\Lambda}\bar{q}_1\sigma^{\mu\nu}q_2G_{\mu\nu}$
 - ▶ Radiative $\Delta F = 1$: $b \rightarrow s\gamma$, $b \rightarrow d\gamma$
- ► Hadronic Dimension 6: $\frac{1}{\Lambda^2} \left(\bar{q}_1 q_2 \right) \left(\bar{q}_3 q_4 \right), \frac{1}{\Lambda^2} \left(\bar{q}_1 \gamma_\mu q_2 \right) \left(\bar{q}_3 \gamma^\mu q_4 \right)$, etc.
 - ▶ Meson Mixing $\Delta F = 2$: Δm_K , Δm_D , Δm_{B_s} , Δm_{B_d}
- ▶ Leptonic Dimension 6: $\frac{1}{\Lambda^2} (\bar{q}_1 q_2) (\mu^+ \mu^-)$, $\frac{1}{\Lambda^2} (\bar{q}_1 \gamma_\mu q_2) (\bar{\nu} \gamma^\mu \nu)$, etc.
 - Semi-leptonic $\Delta F=1$: $K \to \pi \nu \nu$, $B_s \to \mu \mu$, $B_d \to \mu \mu$

- ▶ Dimension 5: $\frac{1}{\Lambda}\bar{q}_1\sigma^{\mu\nu}q_2F_{\mu\nu}$, $\frac{1}{\Lambda}\bar{q}_1\sigma^{\mu\nu}q_2G_{\mu\nu}$
 - ▶ Radiative $\Delta F = 1$: $b \rightarrow s\gamma$, $b \rightarrow d\gamma$
- ▶ Hadronic Dimension 6: $\frac{1}{\Lambda^2} \left(\bar{q}_1 q_2 \right) \left(\bar{q}_3 q_4 \right)$, $\frac{1}{\Lambda^2} \left(\bar{q}_1 \gamma_\mu q_2 \right) \left(\bar{q}_3 \gamma^\mu q_4 \right)$, etc.
 - ▶ Meson Mixing $\Delta F = 2$: Δm_K , Δm_D , Δm_{B_s} , Δm_{B_d}
- ▶ Leptonic Dimension 6: $\frac{1}{\Lambda^2} (\bar{q}_1 q_2) (\mu^+ \mu^-)$, $\frac{1}{\Lambda^2} (\bar{q}_1 \gamma_\mu q_2) (\bar{\nu} \gamma^\mu \nu)$, etc.
 - Semi-leptonic $\Delta F=1$: $K \to \pi \nu \nu$, $B_{\mathbf{s}} \to \mu \mu$, $B_{\mathbf{d}} \to \mu \mu$

Bounds on some operators *much* stronger than others, even for the same observable:

OpA —
$$\Delta m_K : (\bar{s}_L \gamma^\mu d_L)^2 \Rightarrow \Lambda > 9.8 \times 10^2 \text{ TeV}$$

OpB — $\Delta m_K : (\bar{s}_R d_L) (\bar{s}_L d_R) \Rightarrow \Lambda > 1.8 \times 10^4 \text{ TeV}$ (Isidori, Nir, Perez 2010)

Lightning Flavor Review

SUSY: The Mass Matrix and the MIA

$$M_{d}^{2} = \begin{pmatrix} m_{Q,11}^{2} & m_{Q,12}^{2} & m_{Q,13}^{2} & A_{d,11}^{\dagger} v_{d} & A_{d,12}^{\dagger} v_{d} & A_{d,13}^{\dagger} v_{d} \\ m_{Q,21}^{2} & m_{Q,22}^{2} & m_{Q,23}^{2} & A_{d,21}^{\dagger} v_{d} & A_{d,22}^{\dagger} v_{d} & A_{d,23}^{\dagger} v_{d} \\ \frac{m_{Q,31}^{2}}{A_{d,11} v_{d}} & M_{Q,32} & m_{Q,33}^{2} & A_{d,31}^{\dagger} v_{d} & A_{d,32}^{\dagger} v_{d} & A_{d,33}^{\dagger} v_{d} \\ A_{d,21} v_{d} & A_{d,12} v_{d} & A_{d,13} v_{d} & m_{D,11}^{2} & m_{D,12}^{2} & m_{D,13}^{2} \\ A_{d,31} v_{d} & A_{d,32} v_{d} & A_{d,33} v_{d} & m_{D,11}^{2} & m_{D,12}^{2} & m_{D,13}^{2} \end{pmatrix}$$

Evans (UIUC) Flavor in EGMSB January 15, 2015 28 / 40

Lightning Flavor Review

SUSY: The Mass Matrix and the MIA

$$M_{d}^{2} = \begin{pmatrix} m_{Q,11}^{2} & m_{Q,12}^{2} & m_{Q,13}^{2} & A_{d,11}^{\dagger} v_{d} & A_{d,12}^{\dagger} v_{d} & A_{d,13}^{\dagger} v_{d} \\ m_{Q,21}^{2} & m_{Q,22}^{2} & m_{Q,23}^{2} & A_{d,21}^{\dagger} v_{d} & A_{d,22}^{\dagger} v_{d} & A_{d,23}^{\dagger} v_{d} \\ \frac{m_{Q,31}^{2}}{A_{d,11} v_{d}} & m_{Q,32}^{2} & m_{Q,33}^{2} & A_{d,31}^{\dagger} v_{d} & A_{d,32}^{\dagger} v_{d} & A_{d,33}^{\dagger} v_{d} \\ \frac{A_{d,11} v_{d}}{A_{d,21} v_{d}} & A_{d,12} v_{d} & A_{d,13} v_{d} & m_{D,11}^{2} & m_{D,12}^{2} & m_{D,13}^{2} \\ A_{d,31} v_{d} & A_{d,32} v_{d} & A_{d,33} v_{d} & m_{D,11}^{2} & m_{D,12}^{2} & m_{D,13}^{2} \end{pmatrix}$$

$$M_{d}^{2} = \tilde{m}_{d,0}^{2} (\mathbf{1} + \delta^{XY}), \qquad \text{where } \tilde{m}_{d,0}^{2} = \frac{1}{6} \operatorname{Tr}(M_{d}^{2})$$

 $\delta^{XY} = \begin{pmatrix} \delta_{ij}^{LL} & \delta_{ij}^{RL} \\ \hline \delta_{ij}^{LR} & \delta_{ij}^{RR} \end{pmatrix}$

Lightning Flavor Review

SUSY: The Mass Matrix and the MIA

$$\begin{split} M_{d}^{2} &= \begin{pmatrix} m_{Q,11}^{2} & m_{Q,12}^{2} & m_{Q,13}^{2} & A_{d,11}^{\dagger}v_{d} & A_{d,12}^{\dagger}v_{d} & A_{d,23}^{\dagger}v_{d} \\ m_{Q,21}^{2} & m_{Q,22}^{2} & m_{Q,23}^{2} & A_{d,21}^{\dagger}v_{d} & A_{d,22}^{\dagger}v_{d} & A_{d,23}^{\dagger}v_{d} \\ m_{Q,31}^{2} & m_{Q,32}^{2} & m_{Q,33}^{2} & A_{d,31}^{\dagger}v_{d} & A_{d,32}^{\dagger}v_{d} & A_{d,33}^{\dagger}v_{d} \\ \hline A_{d,11}v_{d} & A_{d,12}v_{d} & A_{d,13}v_{d} & m_{D,11}^{2} & m_{D,12}^{2} & m_{D,13}^{2} \\ A_{d,31}v_{d} & A_{d,22}v_{d} & A_{d,33}v_{d} & m_{D,11}^{2} & m_{D,12}^{2} & m_{D,13}^{2} \\ A_{d,31}v_{d} & A_{d,32}v_{d} & A_{d,33}v_{d} & m_{D,11}^{2} & m_{D,12}^{2} & m_{D,13}^{2} \\ \end{pmatrix} \end{split}$$

$$M_{d}^{2} &= \tilde{m}_{d,0}^{2} (\mathbf{1} + \delta^{XY}), \qquad \text{where } \tilde{m}_{d,0}^{2} = \frac{1}{6} \operatorname{Tr}(M_{d}^{2})$$

$$\delta^{XY} &= \begin{pmatrix} \frac{\delta_{il}^{LL}}{ij} & \delta_{ij}^{RL} \\ \delta_{ij}^{LR} & \delta_{ij}^{RR} \end{pmatrix}$$

$$\delta^{LR}_{ij} &= \frac{m_{Q,ij}^{2}}{\tilde{m}_{d,0}^{2}} - \mathbf{1} \qquad \delta^{RL}_{ij} &= \frac{v_{d}A_{d,ij}}{\tilde{m}_{d,0}^{2}}$$

$$\delta^{RR}_{ij} &= \frac{m_{D,ij}^{2}}{\tilde{m}_{d,0}^{2}} - \mathbf{1} \qquad \delta^{RL}_{ij} &= \frac{v_{d}A_{d,ij}}{\tilde{m}_{d,0}^{2}}$$

The Task at Hand

$$W = \kappa_3 Q_3 \Phi \tilde{\Phi} \rightarrow W = \kappa_i Q_i \Phi \tilde{\Phi}$$

We want to compute bounds on couplings κ_i from flavor observables

The Task at Hand

$$W = \kappa_3 Q_3 \Phi \tilde{\Phi} \to W = \kappa_i Q_i \Phi \tilde{\Phi}$$

We want to compute bounds on couplings κ_i from flavor observables

To do this we need the following:

- ► Compute general non-MFV soft masses at the messenger scale
- Run them down to the SUSY scale, including full 3x3 CKM & CPV
- ► Compute 1-loop Wilson coefficients for all operators of interest
- ▶ Run these Wilson coefficients down to the meson scale
- Compute the flavor observables

The Task at Hand

$$W = \kappa_3 Q_3 \Phi \tilde{\Phi} \rightarrow W = \kappa_i Q_i \Phi \tilde{\Phi}$$

We want to compute bounds on couplings κ_i from flavor observables

To do this we need the following:

- ► Compute general non-MFV soft masses at the messenger scale
- ▶ Run them down to the SUSY scale, including full 3x3 CKM & CPV
- ► Compute 1-loop Wilson coefficients for all operators of interest
- ▶ Run these Wilson coefficients down to the meson scale
- Compute the flavor observables

We could not find a suitable public code to do all of this, so we wrote it!

Toward a Flavor Story FormFlavor

FormFlavor

► Mathematica package based on FeynArts and FormCalc

- ▶ Mathematica package based on FeynArts and FormCalc
- ► Computes one-loop Wilson coefficients from Feynman rules

- Mathematica package based on FeynArts and FormCalc
- Computes one-loop Wilson coefficients from Feynman rules
- Computes many flavor and CP observables:
 - $ightharpoonup \Delta m_K, \ \Delta m_D, \ \Delta m_{B_s}, \ \Delta m_{B_d}$
 - $K \to \pi \nu \nu$, $B_s \to \mu \mu$, $B_d \to \mu \mu$
 - ▶ $b \rightarrow s\gamma$, $b \rightarrow d\gamma$
 - $ightharpoonup \epsilon_K$, neutron EDM
 - Straightforward to add new observables!

- Mathematica package based on FeynArts and FormCalc
- Computes one-loop Wilson coefficients from Feynman rules
- Computes many flavor and CP observables:
 - \blacktriangleright Δm_K , Δm_D , Δm_{B_s} , Δm_{B_d}
 - $K \to \pi \nu \nu$, $B_s \to \mu \mu$, $B_d \to \mu \mu$
 - ▶ $b \rightarrow s\gamma$, $b \rightarrow d\gamma$
 - $ightharpoonup \epsilon_K$, neutron EDM
 - Straightforward to add new observables!
- Currently for non-MFV MSSM, can be modified for other models

- Mathematica package based on FeynArts and FormCalc
- Computes one-loop Wilson coefficients from Feynman rules
- Computes many flavor and CP observables:
 - $ightharpoonup \Delta m_K, \ \Delta m_D, \ \Delta m_{B_s}, \ \Delta m_{B_d}$
 - $K \rightarrow \pi \nu \nu$, $B_s \rightarrow \mu \mu$, $B_d \rightarrow \mu \mu$
 - ▶ $b \rightarrow s\gamma$, $b \rightarrow d\gamma$
 - $ightharpoonup \epsilon_K$, neutron EDM
 - Straightforward to add new observables!
- Currently for non-MFV MSSM, can be modified for other models

(Now, FlavorKit exists which does similar things with SARAH and Spheno)

Our EGMSB Mass Matrix: Chiral Flavor Violation

In the third-generation dominant limit $(y_i = 0 \text{ for } i \neq t, b)$

Evans (UIUC) Flavor in EGMSB January 15, 2015 31 / 40

Our EGMSB Mass Matrix: Chiral Flavor Violation

In the third-generation dominant limit $(y_i = 0 \text{ for } i \neq t, b)$

Features:

- Q-class matrix form for M_d^2 and M_u^2 , U-class only for M_u^2
- Flavor violation always off in either LL or RR block (no $\delta_{ii}^{LL}\delta_{ii}^{RR}$)
- LR/RL blocks only have non-zero entries on i3/3i elements (no $\delta_{ii}^{LR}\delta_{ii}^{RL}$)

Evans (UIUC) Flavor in EGMSB January 15, 2015 31 / 40

Our EGMSB Mass Matrix: Chiral Flavor Violation

In the third-generation dominant limit $(y_i = 0 \text{ for } i \neq t, b)$

$$Q\text{-class:} \qquad \delta m^2 \sim \begin{pmatrix} \kappa_1^* \kappa_1 \tilde{\Lambda}^2 & \kappa_1^* \kappa_2 \tilde{\Lambda}^2 & \kappa_1^* \kappa_3 \tilde{\Lambda}^2 & 0 & 0 & \kappa_1^* \kappa_3 \, yv \tilde{\Lambda} \\ \kappa_2^* \kappa_1 \tilde{\Lambda}^2 & \kappa_2^* \kappa_2 \tilde{\Lambda}^2 & \kappa_2^* \kappa_3 \tilde{\Lambda}^2 & 0 & 0 & \kappa_2^* \kappa_3 \, yv \tilde{\Lambda} \\ \kappa_3^* \kappa_1 \tilde{\Lambda}^2 & \kappa_3^* \kappa_2 \tilde{\Lambda}^2 & \kappa_3^* \kappa_3 \tilde{\Lambda}^2 & 0 & 0 & \kappa_2^* \kappa_3 \, yv \tilde{\Lambda} \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \kappa_3^* \kappa_1 \, yv \tilde{\Lambda} & \kappa_3^* \kappa_2 \, yv \tilde{\Lambda} & \kappa_3^* \kappa_3 \, yv \tilde{\Lambda} & 0 & 0 & \kappa_3^* \kappa_3 \, yv \tilde{\Lambda} \\ \hline \theta & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \kappa_3^* \kappa_1 \, yv \tilde{\Lambda} & \kappa_3^* \kappa_2 \, yv \tilde{\Lambda} & \kappa_3^* \kappa_3 \, yv \tilde{\Lambda} & 0 & \kappa_3^* \kappa_3 \, yv \tilde{\Lambda} \\ \hline \theta & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & \kappa_3^* \kappa_3 \, yv \tilde{\Lambda} & \kappa_3^* \kappa_1 \, yv \tilde{\Lambda} & \kappa_3^* \kappa_2 \, yv \tilde{\Lambda} & \kappa_3^* \kappa_3 \, yv \tilde{\Lambda} \\ \hline 0 & 0 & \kappa_2^* \kappa_3 \, yv \tilde{\Lambda} & \kappa_3^* \kappa_1 \, yv \tilde{\Lambda} & \kappa_3^* \kappa_2 \, \tilde{\Lambda}^2 & \kappa_2^* \kappa_3 \tilde{\Lambda}^2 \\ \hline 0 & 0 & \kappa_3^* \kappa_3 \, yv \tilde{\Lambda} & \kappa_3^* \kappa_1 \tilde{\Lambda}^2 & \kappa_3^* \kappa_2 \tilde{\Lambda}^2 & \kappa_2^* \kappa_3 \tilde{\Lambda}^2 \\ \hline 0 & 0 & \kappa_3^* \kappa_3 \, yv \tilde{\Lambda} & \kappa_3^* \kappa_1 \tilde{\Lambda}^2 & \kappa_3^* \kappa_2 \tilde{\Lambda}^2 & \kappa_3^* \kappa_3 \tilde{\Lambda}^2 \\ \hline \end{array}$$

Features:

- Q-class matrix form for M_d^2 and M_u^2 , U-class only for M_u^2
- Flavor violation always off in either LL or RR block (no $\delta_{ii}^{LL}\delta_{ii}^{RR}$)
- ► LR/RL blocks only have non-zero entries on i3/3i elements (no $\delta_{ii}^{LR}\delta_{ii}^{RL}$)

General χ FV arises simply from symmetries, e.g anarchic Q, vanilla $U, D \Rightarrow Q \chi$ FV

Evans (UIUC) Flavor in EGMSB January 15, 2015 31 / 40

At best tuned point, for
$$(\kappa_1, \kappa_2) = (0, 0)$$
, $\delta m_{Q,33}^2 < 0$

$$\delta m_{Q,ab}^2 = d_Q \left((d_\phi + d_Q) \kappa^2 - 2C_r g_r^2 - \frac{16\pi^2}{3} h(\frac{\Lambda}{M}) \frac{\Lambda^2}{M^2} \right) \kappa_a^* \kappa_b \tilde{\Lambda}^2$$

Increasing κ_1 & κ_2 increases κ^2 , making $\delta m_{Q,33}^2 > 0$

At best tuned point, for $(\kappa_1,\kappa_2)=$ (0,0), $\delta m_{Q.33}^2<0$

$$\delta m_{Q,ab}^2 = d_Q \left((d_\phi + d_Q) \kappa^2 - 2C_r g_r^2 - \frac{16\pi^2}{3} h(\frac{\Lambda}{M}) \frac{\Lambda^2}{M^2} \right) \kappa_a^* \kappa_b \tilde{\Lambda}^2$$

Increasing κ_1 & κ_2 increases κ^2 , making $\delta m_{Q,33}^2 > 0$

Instead, we fix Λ , but vary M to fix the lightest eigenvalue in the m_Q^2 block

Note: Eigenvalues $\left[c\tilde{\Lambda}^2\mathbf{1}_3 - F\left(\kappa, \frac{\Lambda}{M}\right)\tilde{\Lambda}^2\kappa_i^*\kappa_j\right] = \left\{c, c, c - F\left(\kappa, \frac{\Lambda}{M}\right)\kappa^2\right\}\tilde{\Lambda}^2$

2σ Constraints

Evans (UIUC) Flavor in EGMSB January 15, 2015 33 / 40

What happened to the SUSY flavor problem?

Why so few constraints even for $\mathcal{O}(1)$ couplings?

What happened to the SUSY flavor problem?

Why so few constraints even for $\mathcal{O}(1)$ couplings?

Weak for several reasons:

- 1. *U*-class only in up sector − safer than down **←**
- 2. $m_h = 125 \text{ GeV} \Rightarrow \text{most squarks at } \sim 3 \text{ TeV}$
- 3. Effective operator bounds can exaggerate the problem
- 4. Flavor violation is from rank 1 tensor, suppresses FV a bit
- 5. Chiral Flavor Violation (χ FV) Flavor Texture

What happened to the SUSY flavor problem?

Why so few constraints even for $\mathcal{O}(1)$ couplings?

Weak for several reasons:

- 1. *U*-class only in up sector safer than down
- 2. $m_h = 125 \text{ GeV} \Rightarrow \text{most squarks at } \sim 3 \text{ TeV} \blacktriangleleft$
- 3. Effective operator bounds can exaggerate the problem
- 4. Flavor violation is from rank 1 tensor, suppresses FV a bit
- 5. Chiral Flavor Violation (χ FV) Flavor Texture

What happened to the SUSY flavor problem?

Why so few constraints even for $\mathcal{O}(1)$ couplings?

Weak for several reasons:

- 1. *U*-class only in up sector safer than down
- 2. $m_h = 125 \text{ GeV} \Rightarrow \text{most squarks at } \sim 3 \text{ TeV}$
- 3. Effective operator bounds can exaggerate the problem <
- 4. Flavor violation is from rank 1 tensor, suppresses FV a bit
- 5. Chiral Flavor Violation (χ FV) Flavor Texture

From SUSY MIA:

$$rac{1}{\Lambda^2}\left(ar{s}_L\gamma^\mu d_L
ight)^2 = rac{lpha_s^2}{216 ilde{m}^2}\left(\delta_{12}^{LL}
ight)^2\left(ar{s}_L\gamma^\mu d_L
ight)^2:~\Lambda>10^3~{
m TeV} \Rightarrow ilde{m}>5~{
m TeV}$$

What happened to the SUSY flavor problem?

Why so few constraints even for $\mathcal{O}(1)$ couplings?

Weak for several reasons:

- 1. *U*-class only in up sector safer than down
- 2. $m_h = 125 \text{ GeV} \Rightarrow \text{most squarks at } \sim 3 \text{ TeV}$
- 3. Effective operator bounds can exaggerate the problem
- Flavor violation is from rank 1 tensor, suppresses FV a bit ←
- 5. Chiral Flavor Violation (χ FV) Flavor Texture

We fix lightest e.value: $M_{Q,ij}^2 \sim M^2 \mathbf{1} - X \kappa_i \kappa_j \Rightarrow \{M^2, M^2, M^2 - X \kappa^2\}$

$$X\kappa^2 \sim M^2 \Rightarrow \delta^{LL}_{ij} \sim rac{3\kappa_i \kappa_j}{2(\kappa_1^2 + \kappa_2^2 + \kappa_3^2)} \quad ext{ for } \kappa_1 = \kappa_2 = \kappa_3, \quad \delta^{LL}_{ij} \sim rac{1}{2}$$

What happened to the SUSY flavor problem?

Why so few constraints even for $\mathcal{O}(1)$ couplings?

Weak for several reasons:

- 1. *U*-class only in up sector safer than down
- 2. $m_h = 125 \text{ GeV} \Rightarrow \text{most squarks at } \sim 3 \text{ TeV}$
- 3. Effective operator bounds can exaggerate the problem
- 4. Flavor violation is from rank 1 tensor, suppresses FV a bit
- 5. Chiral Flavor Violation (χ FV) Flavor Texture \leftarrow

Type I Q-class and U-class Constraints χ FV Texture

Q-class EGMSB mass matrix has FV in LL and select LR/RL elements

Several factors work in the same direction:
$$\frac{\Delta m_K({\rm Anarchy})}{\Delta m_K(\chi {\rm FV})} \sim$$

$$\chi$$
FV: Contributes to ${\cal O}_V^{LL}$ ONLY

$$O_V^{LL} = (\bar{s}\gamma^\mu P_L d)^2$$

Anarchy: All wilson operators

$$O_S^{LR} = (\bar{s}P_Ld)(\bar{s}P_Rd)$$

Several factors work in the same direction: $\frac{\Delta m_K (\text{Anarchy})}{\Delta m_K (\chi \text{FV})} \sim 40$

$$\chi$$
FV: Contributes to O_V^{LL} ONLY $O_V^{LL} = (\bar{s}\gamma^{\mu}P_Ld)^2$

► HME:
$$\frac{8}{24}B_V^{LL} \sim 0.19$$

Anarchy: All wilson operators

$$O_S^{LR} = (\bar{s}P_Ld)(\bar{s}P_Rd)$$

► HME: $\frac{6}{24}B_{S}^{LR}R_{K}\sim 6.6$

Evans (UIUC) Flavor in EGMSB January 15, 2015 36 / 40

Several factors work in the same direction: $\frac{\Delta m_K(\text{Anarchy})}{\Delta m_K(\chi \text{FV})} \sim 1200$

 χ FV: Contributes to O_V^{LL} ONLY $O_V^{LL} = (\bar{s}\gamma^{\mu}P_Ld)^2$

► HME:
$$\frac{8}{24}B_V^{LL} \sim 0.19$$

▶ MIA factor:
$$\frac{\alpha_s^2}{216} \left(\delta_{d,12}^{LL} \right)^2$$

Anarchy: All wilson operators

$$O_S^{LR} = (\bar{s}P_Ld)(\bar{s}P_Rd)$$

- ► HME: $\frac{6}{24}B_S^{LR}R_K \sim 6.6$
- ▶ MIA factor: $\frac{23\alpha_s^2}{180}\left(\delta_{d,12}^{LL}\delta_{d,12}^{RR}\right)$

Several factors work in the same direction: $\frac{\Delta m_K (Anarchy)}{\Delta m_K (\chi FV)} \sim 6000 \sim 75^2$

 χ FV: Contributes to O_V^{LL} ONLY

$$O_V^{LL}=(\bar{s}\gamma^\mu P_L d)^2$$

- ightharpoonup HME: $rac{8}{24}B_V^{LL}\sim 0.19$
- ▶ MIA factor: $\frac{\alpha_s^2}{216} \left(\delta_{d,12}^{LL} \right)^2$
- ► Running: $\left(\frac{\alpha_s(m_{SUSY})}{\alpha_s(2 \text{ GeV})}\right)^{\frac{6}{23}} \sim 0.7$

Anarchy: All wilson operators

$$O_S^{LR} = (\bar{s}P_Ld)(\bar{s}P_Rd)$$

- ► HME: $\frac{6}{24}B_S^{LR}R_K \sim 6.6$
- ▶ MIA factor: $\frac{23\alpha_s^2}{180}\left(\delta_{d,12}^{LL}\delta_{d,12}^{RR}\right)$
- ▶ Running: $\left(\frac{\alpha_s(m_{SUSY})}{\alpha_s(2 \text{ GeV})}\right)^{-\frac{24}{23}} \sim 3.5$

Several factors work in the same direction: $\frac{\Delta m_K (Anarchy)}{\Delta m_K (\chi FV)} \sim 6000 \sim 75^2$

 $\chi {\rm FV}$: Contributes to ${\cal O}_V^{LL}$ ONLY

$$O_V^{LL} = (\bar{s}\gamma^\mu P_L d)^2$$

- ightharpoonup HME: $rac{8}{24}B_V^{LL}\sim 0.19$
- ▶ MIA factor: $\frac{\alpha_s^2}{216} \left(\delta_{d,12}^{LL} \right)^2$
- ► Running: $\left(\frac{\alpha_s(m_{SUSY})}{\alpha_s(2 \text{ GeV})}\right)^{\frac{6}{23}} \sim 0.7$

Anarchy: All wilson operators

$$O_S^{LR} = (\bar{s}P_Ld)(\bar{s}P_Rd)$$

- ► HME: $\frac{6}{24}B_S^{LR}R_K\sim 6.6$
- ▶ MIA factor: $\frac{23\alpha_s^2}{180}\left(\delta_{d,12}^{LL}\delta_{d,12}^{RR}\right)$
- ► Running: $\left(\frac{\alpha_s(m_{SUSY})}{\alpha_s(2 \text{ GeV})}\right)^{-\frac{24}{23}} \sim 3.5$

Work together to make Δm_X constraints weak!

Future Constraints / Discovery

Prospects

On the 3-5 year time scale, several things should happen:

Future Constraints / Discovery

Prospects

On the 3-5 year time scale, several things should happen:

- ▶ NA62 will measure $K^+ \to \pi^+ \nu \bar{\nu}$ to 10%
- ightharpoonup A full (long-distance included) prediction of Δm_K (RBC and UKQCD)
- ▶ Incremental lattice improvements to Δm_{B_d}
- lacktriangle Mild experimental improvements for $b o q\gamma$

Prospects

On the 3-5 year time scale, several things should happen:

- ▶ NA62 will measure $K^+ \to \pi^+ \nu \bar{\nu}$ to 10%
- ▶ A full (long-distance included) prediction of Δm_K (RBC and UKQCD)
- ▶ Incremental lattice improvements to Δm_{B_d}
- ▶ Mild experimental improvements for $b o q \gamma$

Observable	Improvement	Projected
Δm_K	Theory	10%
Δm_{B_d}	Theory	$\sim\!10\%$
$\Delta m_{B_{m s}}$	Theory	5%
Δm_D	None	_
$Br(K^+ o \pi^+ u ar{ u})$	Experiment	10%
$Br(B o X_s\gamma)$	Experiment	7%
$Br(B o X_d \gamma)$	Experiment	24%
$Br(B_s o \mu^+\mu^-)$	Experiment	15%
$Br(B_d o \mu^+\mu^-)$	Experiment	~35%

Evans (UIUC) Flavor in EGMSB January 15, 2015 37 / 40

Flavor in Type II models

Especially UHu and QHu

Turning on small κ_1, κ_2 makes these models encounter tachyons:

$$\frac{\ln \ UH_u\Phi_Q}{\delta m_{Q,33}^2 = -y_t^2(2\kappa_3^*\kappa_3 + 3\kappa^2)\tilde{\Lambda}^2}$$

$$\frac{\text{In } U\Phi_{H_u}\Phi_Q}{\delta m_{Q,33}^2 = -4y_t^2\kappa_3^*\kappa_3\tilde{\Lambda}^2}$$

Flavor in Type II models

Especially UHu and QHu

Turning on small κ_1, κ_2 makes these models encounter tachyons:

$$\frac{\ln \ UH_u\Phi_Q}{\delta m_{Q,33}^2 = -y_t^2(2\kappa_3^*\kappa_3 + 3\kappa^2)\tilde{\Lambda}^2}$$

$$\frac{\text{In } U\Phi_{H_u}\Phi_Q}{\delta m_{Q,33}^2 = -4y_t^2\kappa_3^*\kappa_3\tilde{\Lambda}^2}$$

- ▶ Could try to solve for $m_h = 125$ in 5 dimensions
 - ▶ i.e., fix $(\kappa_1, \kappa_2, \kappa_3, \Lambda/M)$, increase M to get $m_h = 125$ GeV

Flavor in Type II models

Especially UH_u and QH_u

Turning on small κ_1, κ_2 makes these models encounter tachyons:

$$\underbrace{\frac{\text{In } UH_u\Phi_Q}{\int UH_u\Phi_Q}}_{\delta m_{Q,33}^2 = -y_t^2(2\kappa_3^*\kappa_3 + 3\kappa^2)\tilde{\Lambda}^2} \underbrace{\frac{\text{In } U\Phi_{H_u}\Phi_Q}{\int UH_u\Phi_Q}}_{\delta m_{Q,33}^2 = -4y_t^2\kappa_3^*\kappa_3\tilde{\Lambda}^2}$$

- ▶ Could try to solve for $m_h = 125$ in 5 dimensions
 - ▶ i.e., fix $(\kappa_1, \kappa_2, \kappa_3, \Lambda/M)$, increase M to get $m_h = 125$ GeV
 - ▶ But, 1) computationally unfeasible
 - ▶ and 2) that suppresses importance of κ_3 and reintroduces little $A-m_h$ (The reason Type I Higgs models have high tuning)

Evans (UIUC) Flavor in EGMSB January 15, 2015 38 / 40

Turning on small κ_1, κ_2 makes these models encounter tachyons:

$$\underbrace{\frac{\text{In } UH_u\Phi_Q}{}}_{\delta m_{Q,33}^2 = -y_t^2(2\kappa_3^*\kappa_3 + 3\kappa^2)\tilde{\Lambda}^2} \underbrace{\frac{\text{In } U\Phi_{H_u}\Phi_Q}{}}_{\delta m_{Q,33}^2 = -4y_t^2\kappa_3^*\kappa_3\tilde{\Lambda}^2}$$

- ▶ Could try to solve for $m_h = 125$ in 5 dimensions
 - ▶ i.e., fix $(\kappa_1, \kappa_2, \kappa_3, \Lambda/M)$, increase M to get $m_h = 125$ GeV
 - But, 1) computationally unfeasible
 - ▶ and 2) that suppresses importance of κ_3 and reintroduces little $A m_h$ (The reason Type I Higgs models have high tuning)
- lacktriangle These models require severe alignment in the κ_3 direction to be viable

Turning on small κ_1, κ_2 makes these models encounter tachyons:

$$\underbrace{\frac{\text{In } UH_u\Phi_Q}{\int UH_u\Phi_Q}}_{\delta m_{Q,33}^2 = -y_t^2(2\kappa_3^*\kappa_3 + 3\kappa^2)\tilde{\Lambda}^2} \underbrace{\frac{\text{In } U\Phi_{H_u}\Phi_Q}{\int UH_u\Phi_Q}}_{\delta m_{Q,33}^2 = -4y_t^2\kappa_3^*\kappa_3\tilde{\Lambda}^2}$$

- ▶ Could try to solve for $m_h = 125$ in 5 dimensions
 - i.e., fix $(\kappa_1, \kappa_2, \kappa_3, \Lambda/M)$, increase M to get $m_h = 125$ GeV
 - ▶ But, 1) computationally unfeasible
 - ▶ and 2) that suppresses importance of κ_3 and reintroduces little $A-m_h$ (The reason Type I Higgs models have high tuning)
- lacktriangle These models require severe alignment in the κ_3 direction to be viable

(Note: still χ FV, so flavor is fine in narrow window of validity)

Evans (UIUC) Flavor in EGMSB January 15, 2015 38 / 40

Types of models

Tuning & Flavor

	Type I			Type II	
	Higgs	<u>Q</u> -class	<u>U-class</u>	w/ mixing	w/o mixing
	$\lambda H_u \Phi \tilde{\Phi}$	$\lambda Q \Phi \tilde{\Phi}$	$\lambda U \Phi ilde{\Phi}$	$\lambda H_u Q \Phi_U$	$\lambda \textit{UE}\Phi_{ar{D}}$
Tuning:	BAD	GOOD	GOOD	GOOD	BAD
Flavor:	MFV	OKAY	GOOD	TACHYONS	DON'T CARE!

Evans (UIUC) Flavor in EGMSB 39 / 40 January 15, 2015

Summary & Future Directions

- We examined tuning in EGMSB models that get $m_h = 125$ GeV
- Wrote FormFlavor to investigate flavor in this non-MFV model
- Flavor constraints are weak in these models
 - Mostly due to the special χ FV texture
 - ▶ Δm_D and $b \rightarrow s \gamma$ dominate
 - $K^+ \to \pi^+ \nu \nu$, Δm_K , and Δm_{B_A} could constrain soon
- $\rightarrow m_h = 125$, no SUSY @ LHC8 & SUSY flavor correlated problems!

Flavor in EGMSB January 15, 2015 40 / 40

Summary & Future Directions

- lacktriangle We examined tuning in EGMSB models that get $m_h=125$ GeV
- Wrote FormFlavor to investigate flavor in this non-MFV model
- Flavor constraints are weak in these models
 - ▶ Mostly due to the special χ FV texture
 - ▶ Δm_D and $b \rightarrow s \gamma$ dominate
 - $ightharpoonup K^+ o \pi^+
 u
 u$, Δm_K , and Δm_{B_d} could constrain soon
- ▶ $m_h = 125$, no SUSY @ LHC8 & SUSY flavor correlated problems!

Future directions

- ▶ We only focused on flavor observables, we want to look at CP as well
- ▶ The χ FV texture deserves further study on its own (like MFV)
- We plan to make FormFlavor public
- ▶ Collider phenomenology is very interesting, especially in the FV case
 - Complete model for Flavored Naturalness (Blanke, Giudice, Paradisi, Perez, Zupan)

Evans (UIUC) Flavor in EGMSB January 15, 2015 40 / 40